Package org.drip.dynamics.kolmogorov
Class RdFokkerPlanck
java.lang.Object
org.drip.dynamics.kolmogorov.RdFokkerPlanck
public class RdFokkerPlanck
extends java.lang.Object
RdFokkerPlanck exposes the Rd Fokker-Planck Probability Density Function Evolution
Equation. The References are:
- Bogoliubov, N. N., and D. P. Sankevich (1994): N. N. Bogoliubov and Statistical Mechanics Russian Mathematical Surveys 49 (5) 19-49
- Holubec, V., K. Kroy, and S. Steffenoni (2019): Physically Consistent Numerical Solver for Time-dependent Fokker-Planck Equations Physical Review E 99 (4) 032117
- Kadanoff, L. P. (2000): Statistical Physics: Statics, Dynamics, and Re-normalization World Scientific
- Ottinger, H. C. (1996): Stochastic Processes in Polymeric Fluids Springer-Verlag Berlin-Heidelberg
- Wikipedia (2019): Fokker-Planck Equation https://en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
- Module = Product Core Module
- Library = Fixed Income Analytics
- Project = HJM, Hull White, LMM, and SABR Dynamic Evolution Models
- Package = Fokker Planck Kolmogorov Forward/Backward
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description RdFokkerPlanck(RdToR1Drift[] driftFunctionArray, DiffusionTensor diffusionTensor, RiskenOmegaEstimator riskenOmegaEstimator)
RdFokkerPlanck Constructor -
Method Summary
Modifier and Type Method Description DiffusionTensor
diffusionTensor()
Retrieve the Diffusion TensorRdToR1Drift[]
driftFunctionArray()
Retrieve the Drift Function Arraydouble
pdfDot(RdProbabilityDensityFunction probabilityDensityFunction, TimeRdVertex timeRdVertex)
Compute the Next Incremental Time Derivative of the PDFRiskenOmegaEstimator
riskenOmegaEstimator()
Retrieve the Risken Omega EstimatorRdToR1
steadyStatePDF()
Compute the Steady-State Probability Distribution Function, if anyRdProbabilityDensityFunction
temporalPDF(RdToR1 intialProbabilityDensityFunction)
Compute the Temporal Probability Distribution Function, if anyMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
RdFokkerPlanck
public RdFokkerPlanck(RdToR1Drift[] driftFunctionArray, DiffusionTensor diffusionTensor, RiskenOmegaEstimator riskenOmegaEstimator) throws java.lang.ExceptionRdFokkerPlanck Constructor- Parameters:
driftFunctionArray
- Drift Function ArraydiffusionTensor
- Diffusion TensorriskenOmegaEstimator
- Risken Omega Estimator- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
driftFunctionArray
Retrieve the Drift Function Array- Returns:
- The Drift Function Array
-
diffusionTensor
Retrieve the Diffusion Tensor- Returns:
- The Diffusion Tensor
-
riskenOmegaEstimator
Retrieve the Risken Omega Estimator- Returns:
- The Risken Omega Estimator
-
pdfDot
public double pdfDot(RdProbabilityDensityFunction probabilityDensityFunction, TimeRdVertex timeRdVertex) throws java.lang.ExceptionCompute the Next Incremental Time Derivative of the PDF- Parameters:
probabilityDensityFunction
- The PDFtimeRdVertex
- The Rd Time Vertex- Returns:
- Next Incremental Time Derivative of the PDF
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
temporalPDF
Compute the Temporal Probability Distribution Function, if any- Parameters:
intialProbabilityDensityFunction
- The Initial Probability Density Function- Returns:
- The Temporal Probability Distribution Function
-
steadyStatePDF
Compute the Steady-State Probability Distribution Function, if any- Returns:
- The Steady-State Probability Distribution Function
-