Class RdFokkerPlanck

java.lang.Object
org.drip.dynamics.kolmogorov.RdFokkerPlanck

public class RdFokkerPlanck
extends java.lang.Object
RdFokkerPlanck exposes the Rd Fokker-Planck Probability Density Function Evolution Equation. The References are:

  • Bogoliubov, N. N., and D. P. Sankevich (1994): N. N. Bogoliubov and Statistical Mechanics Russian Mathematical Surveys 49 (5) 19-49
  • Holubec, V., K. Kroy, and S. Steffenoni (2019): Physically Consistent Numerical Solver for Time-dependent Fokker-Planck Equations Physical Review E 99 (4) 032117
  • Kadanoff, L. P. (2000): Statistical Physics: Statics, Dynamics, and Re-normalization World Scientific
  • Ottinger, H. C. (1996): Stochastic Processes in Polymeric Fluids Springer-Verlag Berlin-Heidelberg
  • Wikipedia (2019): Fokker-Planck Equation https://en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation


Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • RdFokkerPlanck

      public RdFokkerPlanck​(RdToR1Drift[] driftFunctionArray, DiffusionTensor diffusionTensor, RiskenOmegaEstimator riskenOmegaEstimator) throws java.lang.Exception
      RdFokkerPlanck Constructor
      Parameters:
      driftFunctionArray - Drift Function Array
      diffusionTensor - Diffusion Tensor
      riskenOmegaEstimator - Risken Omega Estimator
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • driftFunctionArray

      public RdToR1Drift[] driftFunctionArray()
      Retrieve the Drift Function Array
      Returns:
      The Drift Function Array
    • diffusionTensor

      public DiffusionTensor diffusionTensor()
      Retrieve the Diffusion Tensor
      Returns:
      The Diffusion Tensor
    • riskenOmegaEstimator

      public RiskenOmegaEstimator riskenOmegaEstimator()
      Retrieve the Risken Omega Estimator
      Returns:
      The Risken Omega Estimator
    • pdfDot

      public double pdfDot​(RdProbabilityDensityFunction probabilityDensityFunction, TimeRdVertex timeRdVertex) throws java.lang.Exception
      Compute the Next Incremental Time Derivative of the PDF
      Parameters:
      probabilityDensityFunction - The PDF
      timeRdVertex - The Rd Time Vertex
      Returns:
      Next Incremental Time Derivative of the PDF
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
    • temporalPDF

      public RdProbabilityDensityFunction temporalPDF​(RdToR1 intialProbabilityDensityFunction)
      Compute the Temporal Probability Distribution Function, if any
      Parameters:
      intialProbabilityDensityFunction - The Initial Probability Density Function
      Returns:
      The Temporal Probability Distribution Function
    • steadyStatePDF

      public RdToR1 steadyStatePDF()
      Compute the Steady-State Probability Distribution Function, if any
      Returns:
      The Steady-State Probability Distribution Function