Package org.drip.dynamics.process
Class R1StochasticEvolver
java.lang.Object
org.drip.dynamics.process.R1StochasticEvolver
- Direct Known Subclasses:
R1BrownianStochasticEvolver
,R1CKLSStochasticEvolver
public class R1StochasticEvolver
extends java.lang.Object
R1StochasticEvolver implements the R1 Stochastic Evolver. The References are:
- Doob, J. L. (1942): The Brownian Movement and Stochastic Equations Annals of Mathematics 43 (2) 351-369
- Gardiner, C. W. (2009): Stochastic Methods: A Handbook for the Natural and Social Sciences 4th Edition Springer-Verlag
- Kadanoff, L. P. (2000): Statistical Physics: Statics, Dynamics, and Re-normalization World Scientific
- Karatzas, I., and S. E. Shreve (1991): Brownian Motion and Stochastic Calculus 2nd Edition Springer-Verlag
- Risken, H., and F. Till (1996): The Fokker-Planck Equation – Methods of Solution and Applications Springer
- Module = Product Core Module
- Library = Fixed Income Analytics
- Project = HJM, Hull White, LMM, and SABR Dynamic Evolution Models
- Package = Ito-Dynamics Based Stochastic Process
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description R1StochasticEvolver(R1ToR1Drift driftFunction, R1ToR1Volatility volatilityFunction, R1StochasticDriver stochasticDriver)
R1StochasticEvolver Constructor -
Method Summary
Modifier and Type Method Description R1ToR1Drift
driftFunction()
Retrieve the Drift FunctionTimeR1Vertex
evolve(TimeR1Vertex currentVertex, double timeIncrement)
Generate the Next Vertex in the IterationR1FokkerPlanck
fokkerPlanckGenerator()
Construct the Fokker Planck PDF Generator corresponding to R1 Stochastic EvolverR1Univariate
futureValueDistribution(double x0, double t)
Generate the Future Value Distribution at Time tPopulationCentralMeasures
steadyStatePopulationCentralMeasures(double x0)
Generate the Steady State Population Central MeasuresR1StochasticDriver
stochasticDriver()
Retrieve the Stochastic DriverPopulationCentralMeasures
temporalPopulationCentralMeasures(double x0, double t)
Estimate the Temporal Central Measures for the Underlier given the Delta 0 Starting PDFR1ToR1Volatility
volatilityFunction()
Retrieve the Volatility FunctionMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
R1StochasticEvolver
public R1StochasticEvolver(R1ToR1Drift driftFunction, R1ToR1Volatility volatilityFunction, R1StochasticDriver stochasticDriver) throws java.lang.ExceptionR1StochasticEvolver Constructor- Parameters:
driftFunction
- Drift FunctionvolatilityFunction
- Volatility FunctionstochasticDriver
- Stochastic Driver- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
driftFunction
Retrieve the Drift Function- Returns:
- The Drift Function
-
volatilityFunction
Retrieve the Volatility Function- Returns:
- The Volatility Function
-
stochasticDriver
Retrieve the Stochastic Driver- Returns:
- The Stochastic Driver
-
evolve
Generate the Next Vertex in the Iteration- Parameters:
currentVertex
- The Current VertextimeIncrement
- The Time Increment- Returns:
- The Next Vertex
-
temporalPopulationCentralMeasures
Estimate the Temporal Central Measures for the Underlier given the Delta 0 Starting PDF- Parameters:
x0
- The X Anchor for the Delta Functiont
- The Forward Time- Returns:
- The Temporal Central Measures for the Underlier
-
steadyStatePopulationCentralMeasures
Generate the Steady State Population Central Measures- Parameters:
x0
- Starting Variate- Returns:
- The Steady State Population Central Measures
-
fokkerPlanckGenerator
Construct the Fokker Planck PDF Generator corresponding to R1 Stochastic Evolver- Returns:
- The Fokker Planck PDF Generator corresponding to R1 Stochastic Evolver
-
futureValueDistribution
Generate the Future Value Distribution at Time t- Parameters:
x0
- Starting Variatet
- Time- Returns:
- The Future Value Distribution
-