Package org.drip.function.rdtor1
Class RiskObjectiveUtilityMultivariate
java.lang.Object
org.drip.function.definition.RdToR1
org.drip.function.rdtor1.RiskObjectiveUtilityMultivariate
public class RiskObjectiveUtilityMultivariate extends RdToR1
RiskObjectiveUtilityMultivariate implements the Risk Objective Rd To R1
Multivariate Function used in Portfolio Allocation. It accommodates both the Risk Tolerance and Risk
Aversion Variants.
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Rd To Rd Function Analysis
- Package = Built-in Rd To R1 Functions
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description RiskObjectiveUtilityMultivariate(double[][] aadblCovarianceMatrix, double[] adblExpectedReturns, double dblRiskAversion, double dblRiskTolerance, double dblRiskFreeRate)
RiskObjectiveUtilityMultivariate Constructor -
Method Summary
Modifier and Type Method Description double[][]
covariance()
Retrieve the Co-variance Matrixint
dimension()
Retrieve the Input Variate Dimensiondouble
evaluate(double[] adblVariate)
Evaluate for the given Input Variatesdouble[]
expectedReturns()
Retrieve the Array of Expected Returnsdouble[][]
hessian(double[] adblVariate)
Evaluate The Hessian for the given Input Variatesdouble[]
jacobian(double[] adblVariate)
Evaluate the Jacobian for the given Input Variatesdouble
riskAversion()
Retrieve the Risk Aversion Factordouble
riskFreeRate()
Retrieve the Risk Free Ratedouble
riskTolerance()
Retrieve the Risk Tolerance FactorMethods inherited from class org.drip.function.definition.RdToR1
conditionNumber, conditionNumberL2, conditionNumberLInfinity, conditionNumberLp, derivative, differential, gradient, gradientModulus, gradientModulusFunction, integrate, maxima, minima, ValidateInput
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
RiskObjectiveUtilityMultivariate
public RiskObjectiveUtilityMultivariate(double[][] aadblCovarianceMatrix, double[] adblExpectedReturns, double dblRiskAversion, double dblRiskTolerance, double dblRiskFreeRate) throws java.lang.ExceptionRiskObjectiveUtilityMultivariate Constructor- Parameters:
aadblCovarianceMatrix
- The Co-variance Matrix Double ArrayadblExpectedReturns
- Array of Expected ReturnsdblRiskAversion
- The Risk Aversion ParameterdblRiskTolerance
- The Risk Tolerance ParameterdblRiskFreeRate
- The Risk Free Rate- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
dimension
public int dimension()Retrieve the Input Variate Dimension -
covariance
public double[][] covariance()Retrieve the Co-variance Matrix- Returns:
- The Co-variance Matrix
-
expectedReturns
public double[] expectedReturns()Retrieve the Array of Expected Returns- Returns:
- The Array of Expected Returns
-
riskAversion
public double riskAversion()Retrieve the Risk Aversion Factor- Returns:
- The Risk Aversion Factor
-
riskTolerance
public double riskTolerance()Retrieve the Risk Tolerance Factor- Returns:
- The Risk Tolerance Factor
-
riskFreeRate
public double riskFreeRate()Retrieve the Risk Free Rate- Returns:
- The Risk Free Rate
-
evaluate
public double evaluate(double[] adblVariate) throws java.lang.ExceptionDescription copied from class:RdToR1
Evaluate for the given Input Variates -
jacobian
public double[] jacobian(double[] adblVariate)Description copied from class:RdToR1
Evaluate the Jacobian for the given Input Variates -
hessian
public double[][] hessian(double[] adblVariate)Description copied from class:RdToR1
Evaluate The Hessian for the given Input Variates
-