Uses of Class
org.drip.graph.core.Edge
| Package | Description |
|---|---|
| org.drip.graph.astar |
A* Heuristic Shortest Path Family
|
| org.drip.graph.core |
Vertexes, Edges, Trees, and Graphs
|
| org.drip.graph.shortestpath |
Shortest Path Generation Algorithm Family
|
-
Uses of Edge in org.drip.graph.astar
Methods in org.drip.graph.astar with parameters of type Edge Modifier and Type Method Description booleanFHeuristic. isConsistent(Network<?> graph, Edge edge)Indicate if the Heuristic is ConsistentbooleanFHeuristic. isMonotone(Network<?> graph, Edge edge)Indicate if the Heuristic is MonotonedoubleFHeuristic. reducedWeight(Network<?> graph, Edge edge)Compute the Reduced Weight of the Edge -
Uses of Edge in org.drip.graph.core
Methods in org.drip.graph.core that return Edge Modifier and Type Method Description EdgeEdge. invert()Retrieve a new "Inverted" EdgeEdgeTree. maximumBottleneckEdge()Retrieve the Maximum Bottleneck Edge of the TreeEdgeTree. minimumBottleneckEdge()Retrieve the Minimum Bottleneck Edge of the TreeMethods in org.drip.graph.core that return types with arguments of type Edge Modifier and Type Method Description PriorityQueue<java.lang.Double,Edge>Vertex. adjacencyPriorityQueue(boolean minHeap)Retrieve the Ordered Adjacency Priority Queuejava.util.Map<java.lang.String,Edge>CompleteBipartite. crossConnectMap()Retrieve the Cross Connection Edge Mapjava.util.List<Edge>Vertex. destinationEdgeList(java.lang.String sourceVertexName, java.lang.String destinationVertexName)Generate the List of Edges between the Source and the Destinationjava.util.List<Edge>Path. edgeList()Retrieve the Contiguous List of Edgesjava.util.Map<java.lang.String,Edge>Network. edgeMap()Retrieve the Edge Mapjava.util.Map<java.lang.String,Edge>Vertex. edgeMap()Retrieve the Edge MapPriorityQueue<java.lang.Double,Edge>Tree. edgePriorityQueue(Network<?> network, boolean minHeap)Construct and Retrieve the Edge Priority Queue from the Graphjava.util.Set<Edge>Directed. fundamentalCycleEdgeSet(Tree<?> tree)Retrieve the Set of the Fundamental Cycles using the Spanning TreeMethods in org.drip.graph.core with parameters of type Edge Modifier and Type Method Description booleanTree. absorbTreeAndEdge(Tree<?> tree, Edge edge)Absorb the Specified Tree and EdgebooleanTree. absorbTreeAndEdge(Tree<V> tree, Edge edge, java.util.Map<java.lang.String,V> vertexValueMap)Absorb the Specified Tree and EdgebooleanNetwork. addBidirectionalEdge(Edge edge)Add a Bidirectional Edge to the NetworkbooleanNetwork. addBidirectionalEdge(Edge edge, java.util.Map<java.lang.String,V> vertexValueMap)Add a Bidirectional Edge to the NetworkbooleanNetwork. addEdge(Edge edge)Add an Edge to the NetworkbooleanNetwork. addEdge(Edge edge, java.util.Map<java.lang.String,V> vertexValueMap)Add an Edge to the Networkjava.lang.StringVertex. addEdge(Edge edge)Add an EdgebooleanEdge. compareWith(Edge edge)Compare the Current Edge with the Specified OnebooleanForest. conditionalMerge(Edge edge, Directed<?> graph)Conditionally Merge the Specified Source and Destination Trees of the EdgebooleanNetwork. containsEdge(Edge edgeOther)Indicate if the Specified Edge matches with any Edges in the NetworkbooleanNetwork. isEdgeACycle(Edge edge)Indicate if the Edge forms a Cycle with the NetworkConstructor parameters in org.drip.graph.core with type arguments of type Edge Constructor Description CompleteBipartite(java.util.Set<java.lang.String> vertexNameSetP, java.util.Set<java.lang.String> vertexNameSetQ, java.util.Map<java.lang.String,Edge> crossConnectMap)CompleteBipartite ConstructorPath(java.util.List<Edge> edgeList)Path Constructor -
Uses of Edge in org.drip.graph.shortestpath
Methods in org.drip.graph.shortestpath that return Edge Modifier and Type Method Description EdgeAugmentedVertex. precedingEdge()Retrieve the Preceding EdgeMethods in org.drip.graph.shortestpath with parameters of type Edge Modifier and Type Method Description booleanAugmentedVertex. setPrecedingEdge(Edge precedingEdge)Set the Preceding Edge in the PathbooleanVertexAugmentor. updateAugmentedVertex(Edge precedingEdge)Update the Augmented Vertex through the Preceding Vertex represented in the Preceding Edge