Package org.drip.graph.mst
Class SteeleCompleteUniformRandomTree
java.lang.Object
org.drip.graph.mst.SteeleCompleteUniformRandomTree
public class SteeleCompleteUniformRandomTree
extends java.lang.Object
SteeleCompleteUniformRandomTree holds the Expected Length of the MST computed by Steele (2002) for
Graphs with small Number of Vertexes. The References are:
- Bader, D. A., and G. Cong (2006): Fast Shared Memory Algorithms for computing the Minimum Spanning Forests of Sparse Graphs Journal of Parallel and Distributed Computing 66 (11) 1366-1378
- Chazelle, B. (2000): A Minimum Spanning Tree Algorithm with Inverse-Ackerman Type Complexity Journal of the Association for Computing Machinery 47 (6) 1028-1047
- Karger, D. R., P. N. Klein, and R. E. Tarjan (1995): A Randomized Linear-Time Algorithm to find Minimum Spanning Trees Journal of the Association for Computing Machinery 42 (2) 321-328
- Pettie, S., and V. Ramachandran (2002): An Optimal Minimum Spanning Tree Algorithm Journal of the ACM 49 (1) 16-34
- Wikipedia (2020): Minimum Spanning Tree https://en.wikipedia.org/wiki/Minimum_spanning_tree
- Module = Computational Core Module
- Library = Graph Algorithm Library
- Project = Graph Optimization and Tree Construction Algorithms
- Package = Agnostic Minimum Spanning Tree Properties
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description SteeleCompleteUniformRandomTree()
-
Method Summary
Modifier and Type Method Description static double
AsymptoticFriezeMSTLength()
Compute the Length of the MST for Large n (attribution to Alan M.static double
AsymptoticFriezeMSTLength(R1Univariate r1Univariate)
Compute the Length of the MST for Large n (attribution to Alan M.static boolean
ContainsVertexCount(int vertexCount)
Indicate if the Vertex Count is present in the Vertex Count Mapstatic boolean
Init()
Initialize the Steele Vertex MST Mapstatic SteeleCompleteUniformRandomEntry
VertexCountEntry(int vertexCount)
Retrieve the Vertex Count Entry if present in the Vertex Count Mapstatic java.util.Map<java.lang.Integer,SteeleCompleteUniformRandomEntry>
VertexCountMap()
Retrieve the Steele Vertex Count MapMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
SteeleCompleteUniformRandomTree
public SteeleCompleteUniformRandomTree()
-
-
Method Details
-
Init
public static final boolean Init()Initialize the Steele Vertex MST Map- Returns:
- TRUE - The Steele Vertex MST Map successfully initialized
-
VertexCountMap
public static final java.util.Map<java.lang.Integer,SteeleCompleteUniformRandomEntry> VertexCountMap()Retrieve the Steele Vertex Count Map- Returns:
- Steele Vertex Count Map
-
ContainsVertexCount
public static final boolean ContainsVertexCount(int vertexCount)Indicate if the Vertex Count is present in the Vertex Count Map- Parameters:
vertexCount
- Vertex Count- Returns:
- TRUE - The Vertex Count is present in the Vertex Count Map
-
VertexCountEntry
Retrieve the Vertex Count Entry if present in the Vertex Count Map- Parameters:
vertexCount
- Vertex Count- Returns:
- TRUE - The Vertex Count Entry
-
AsymptoticFriezeMSTLength
public static final double AsymptoticFriezeMSTLength()Compute the Length of the MST for Large n (attribution to Alan M. Frieze)- Returns:
- Length of the MST for Large n
-
AsymptoticFriezeMSTLength
public static final double AsymptoticFriezeMSTLength(R1Univariate r1Univariate) throws java.lang.ExceptionCompute the Length of the MST for Large n (attribution to Alan M. Frieze)- Parameters:
r1Univariate
- The R1 Univariate Distribution of the Weights- Returns:
- Length of the MST for Large n
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-