Class SteeleCompleteUniformRandomTree

java.lang.Object
org.drip.graph.mst.SteeleCompleteUniformRandomTree

public class SteeleCompleteUniformRandomTree
extends java.lang.Object
SteeleCompleteUniformRandomTree holds the Expected Length of the MST computed by Steele (2002) for Graphs with small Number of Vertexes. The References are:

  • Bader, D. A., and G. Cong (2006): Fast Shared Memory Algorithms for computing the Minimum Spanning Forests of Sparse Graphs Journal of Parallel and Distributed Computing 66 (11) 1366-1378
  • Chazelle, B. (2000): A Minimum Spanning Tree Algorithm with Inverse-Ackerman Type Complexity Journal of the Association for Computing Machinery 47 (6) 1028-1047
  • Karger, D. R., P. N. Klein, and R. E. Tarjan (1995): A Randomized Linear-Time Algorithm to find Minimum Spanning Trees Journal of the Association for Computing Machinery 42 (2) 321-328
  • Pettie, S., and V. Ramachandran (2002): An Optimal Minimum Spanning Tree Algorithm Journal of the ACM 49 (1) 16-34
  • Wikipedia (2020): Minimum Spanning Tree https://en.wikipedia.org/wiki/Minimum_spanning_tree




Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • SteeleCompleteUniformRandomTree

      public SteeleCompleteUniformRandomTree()
  • Method Details

    • Init

      public static final boolean Init()
      Initialize the Steele Vertex MST Map
      Returns:
      TRUE - The Steele Vertex MST Map successfully initialized
    • VertexCountMap

      public static final java.util.Map<java.lang.Integer,​SteeleCompleteUniformRandomEntry> VertexCountMap()
      Retrieve the Steele Vertex Count Map
      Returns:
      Steele Vertex Count Map
    • ContainsVertexCount

      public static final boolean ContainsVertexCount​(int vertexCount)
      Indicate if the Vertex Count is present in the Vertex Count Map
      Parameters:
      vertexCount - Vertex Count
      Returns:
      TRUE - The Vertex Count is present in the Vertex Count Map
    • VertexCountEntry

      public static final SteeleCompleteUniformRandomEntry VertexCountEntry​(int vertexCount)
      Retrieve the Vertex Count Entry if present in the Vertex Count Map
      Parameters:
      vertexCount - Vertex Count
      Returns:
      TRUE - The Vertex Count Entry
    • AsymptoticFriezeMSTLength

      public static final double AsymptoticFriezeMSTLength()
      Compute the Length of the MST for Large n (attribution to Alan M. Frieze)
      Returns:
      Length of the MST for Large n
    • AsymptoticFriezeMSTLength

      public static final double AsymptoticFriezeMSTLength​(R1Univariate r1Univariate) throws java.lang.Exception
      Compute the Length of the MST for Large n (attribution to Alan M. Frieze)
      Parameters:
      r1Univariate - The R1 Univariate Distribution of the Weights
      Returns:
      Length of the MST for Large n
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid