Package org.drip.learning.bound
Class CoveringNumberBoundBuilder
java.lang.Object
org.drip.learning.bound.CoveringNumberBoundBuilder
public class CoveringNumberBoundBuilder
extends java.lang.Object
CoveringNumberBoundBuilder constructs the CoveringNumberProbabilityBound Instances for specific
Learning Situations. The References are:
- Alon, N., S. Ben-David, N. Cesa Bianchi, and D. Haussler (1997): Scale-sensitive Dimensions, Uniform Convergence, and Learnability Journal of Association of Computational Machinery 44 (4) 615-631
- Anthony, M., and P. L. Bartlett (1999): Artificial Neural Network Learning - Theoretical Foundations Cambridge University Press Cambridge, UK
- Kearns, M. J., R. E. Schapire, and L. M. Sellie (1994): Towards Efficient Agnostic Learning Machine Learning 17 (2) 115-141
- Lee, W. S., P. L. Bartlett, and R. C. Williamson (1998): The Importance of Convexity in Learning with Squared Loss IEEE Transactions on Information Theory 44 1974-1980
- Vapnik, V. N. (1998): Statistical learning Theory Wiley New York
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Covering Numbers, Concentration, Lipschitz Bounds
- Author:
- Lakshmi Krishnamurthy
-
Field Summary
Fields Modifier and Type Field Description static double
EPSILON_EXPONENT_AGNOSTIC_CONVEX_LEARNING
Epsilon Exponent for Agnostic Learning with Convex Functionsstatic double
EPSILON_EXPONENT_AGNOSTIC_LEARNING
Epsilon Exponent for Agnostic Learningstatic double
EPSILON_EXPONENT_REGRESSION_LEARNING
Epsilon Exponent for Regression Learning -
Constructor Summary
Constructors Constructor Description CoveringNumberBoundBuilder()
-
Method Summary
Modifier and Type Method Description static CoveringNumberLossBound
AgnosticConvexLearning(R1ToR1 funcSampleCoefficient, double dblExponentScaler)
Construct the Agnostic Convex Learning CoveringNumberProbabilityBound Instancestatic CoveringNumberLossBound
AgnosticLearning(R1ToR1 funcSampleCoefficient, double dblExponentScaler)
Construct the Agnostic Learning CoveringNumberProbabilityBound Instancestatic CoveringNumberLossBound
RegressionLearning(R1ToR1 funcSampleCoefficient, double dblExponentScaler)
Construct the Regression Learning CoveringNumberProbabilityBound InstanceMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Field Details
-
EPSILON_EXPONENT_REGRESSION_LEARNING
public static final double EPSILON_EXPONENT_REGRESSION_LEARNINGEpsilon Exponent for Regression Learning- See Also:
- Constant Field Values
-
EPSILON_EXPONENT_AGNOSTIC_LEARNING
public static final double EPSILON_EXPONENT_AGNOSTIC_LEARNINGEpsilon Exponent for Agnostic Learning- See Also:
- Constant Field Values
-
EPSILON_EXPONENT_AGNOSTIC_CONVEX_LEARNING
public static final double EPSILON_EXPONENT_AGNOSTIC_CONVEX_LEARNINGEpsilon Exponent for Agnostic Learning with Convex Functions- See Also:
- Constant Field Values
-
-
Constructor Details
-
CoveringNumberBoundBuilder
public CoveringNumberBoundBuilder()
-
-
Method Details
-
RegressionLearning
public static final CoveringNumberLossBound RegressionLearning(R1ToR1 funcSampleCoefficient, double dblExponentScaler)Construct the Regression Learning CoveringNumberProbabilityBound Instance- Parameters:
funcSampleCoefficient
- The Sample Coefficient FunctiondblExponentScaler
- The Exponent Scaler- Returns:
- The Regression Learning CoveringNumberProbabilityBound Instance
-
AgnosticLearning
public static final CoveringNumberLossBound AgnosticLearning(R1ToR1 funcSampleCoefficient, double dblExponentScaler)Construct the Agnostic Learning CoveringNumberProbabilityBound Instance- Parameters:
funcSampleCoefficient
- The Sample Coefficient FunctiondblExponentScaler
- The Exponent Scaler- Returns:
- The Agnostic Learning CoveringNumberProbabilityBound Instance
-
AgnosticConvexLearning
public static final CoveringNumberLossBound AgnosticConvexLearning(R1ToR1 funcSampleCoefficient, double dblExponentScaler)Construct the Agnostic Convex Learning CoveringNumberProbabilityBound Instance- Parameters:
funcSampleCoefficient
- The Sample Coefficient FunctiondblExponentScaler
- The Exponent Scaler- Returns:
- The Agnostic Convex Learning CoveringNumberProbabilityBound Instance
-