Class EmpiricalLearnerLoss

java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.learning.bound.EmpiricalLearnerLoss

public class EmpiricalLearnerLoss
extends R1ToR1
EmpiricalLearnerLoss Function computes the Empirical Loss of a Learning Operation resulting from the Use of a Learning Function in Conjunction with the corresponding Empirical Realization. The References are:

  • Boucheron, S., G. Lugosi, and P. Massart (2003): Concentration Inequalities Using the Entropy Method Annals of Probability 31 1583-1614
  • Lugosi, G. (2002): Pattern Classification and Learning Theory, in: L. Györ, editor, Principles of Non-parametric Learning Springer Wien 5-62


Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • EmpiricalLearnerLoss

      public EmpiricalLearnerLoss​(R1ToR1 learner, double dblRealization) throws java.lang.Exception
      EmpiricalLearnerLoss Constructor
      Parameters:
      learner - The Learning Function
      dblRealization - The Empirical Outcome
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • empiricalRealization

      public double empiricalRealization()
      Retrieve the Empirical Realization
      Returns:
      The Empirical Realization
    • learner

      public R1ToR1 learner()
      Retrieve the Learning Function
      Returns:
      The Learning Function
    • loss

      public double loss​(double dblVariate) throws java.lang.Exception
      Compute the Loss for the specified Variate
      Parameters:
      dblVariate - The Variate
      Returns:
      Loss for the specified Variate
      Throws:
      java.lang.Exception - Thrown if the Loss cannot be computed
    • evaluate

      public double evaluate​(double dblVariate) throws java.lang.Exception
      Description copied from class: R1ToR1
      Evaluate for the given variate
      Specified by:
      evaluate in class R1ToR1
      Parameters:
      dblVariate - Variate
      Returns:
      Returns the calculated value
      Throws:
      java.lang.Exception - Thrown if evaluation cannot be done