Package org.drip.learning.bound
Class EmpiricalLearnerLoss
java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.learning.bound.EmpiricalLearnerLoss
public class EmpiricalLearnerLoss extends R1ToR1
EmpiricalLearnerLoss Function computes the Empirical Loss of a Learning Operation resulting from
the Use of a Learning Function in Conjunction with the corresponding Empirical Realization. The References
are:
- Boucheron, S., G. Lugosi, and P. Massart (2003): Concentration Inequalities Using the Entropy Method Annals of Probability 31 1583-1614
- Lugosi, G. (2002): Pattern Classification and Learning Theory, in: L. Györ, editor, Principles of Non-parametric Learning Springer Wien 5-62
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Covering Numbers, Concentration, Lipschitz Bounds
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description EmpiricalLearnerLoss(R1ToR1 learner, double dblRealization)
EmpiricalLearnerLoss Constructor -
Method Summary
Modifier and Type Method Description double
empiricalRealization()
Retrieve the Empirical Realizationdouble
evaluate(double dblVariate)
Evaluate for the given variateR1ToR1
learner()
Retrieve the Learning Functiondouble
loss(double dblVariate)
Compute the Loss for the specified VariateMethods inherited from class org.drip.function.definition.R1ToR1
antiDerivative, conditionNumber, derivative, differential, differential, integrate, maxima, maxima, minima, minima, poleResidue
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
EmpiricalLearnerLoss
EmpiricalLearnerLoss Constructor- Parameters:
learner
- The Learning FunctiondblRealization
- The Empirical Outcome- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
empiricalRealization
public double empiricalRealization()Retrieve the Empirical Realization- Returns:
- The Empirical Realization
-
learner
Retrieve the Learning Function- Returns:
- The Learning Function
-
loss
public double loss(double dblVariate) throws java.lang.ExceptionCompute the Loss for the specified Variate- Parameters:
dblVariate
- The Variate- Returns:
- Loss for the specified Variate
- Throws:
java.lang.Exception
- Thrown if the Loss cannot be computed
-
evaluate
public double evaluate(double dblVariate) throws java.lang.ExceptionDescription copied from class:R1ToR1
Evaluate for the given variate
-