Package org.drip.learning.kernel
Class EigenFunctionRdToR1
java.lang.Object
org.drip.spaces.rxtor1.NormedRxToNormedR1
org.drip.spaces.rxtor1.NormedRdToNormedR1
org.drip.learning.kernel.EigenFunctionRdToR1
public abstract class EigenFunctionRdToR1 extends NormedRdToNormedR1
EigenFunctionRdToR1 holds the Eigen-vector Function and its corresponding Space of the
Rd To R1 Kernel Linear Integral Operator defined by:
T_k [f(.)] := Integral Over Input Space {k (., y) * f(y) * d[Prob(y)]}
The References are:
The References are:
- Ash, R. (1965): Information Theory Inter-science New York
- Konig, H. (1986): Eigenvalue Distribution of Compact Operators Birkhauser Basel, Switzerland
- Smola, A. J., A. Elisseff, B. Scholkopf, and R. C. Williamson (2000): Entropy Numbers for Convex Combinations and mlps, in: Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans - editors MIT Press Cambridge, MA
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Statistical Learning Banach Mercer Kernels
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description double
agnosticUpperBound()
Retrieve the Agnostic Upper Bound of the Eigen-FunctionMethods inherited from class org.drip.spaces.rxtor1.NormedRdToNormedR1
function, inputMetricVectorSpace, outputMetricVectorSpace, populationESS, sampleMetricNorm, sampleSupremumNorm
Methods inherited from class org.drip.spaces.rxtor1.NormedRxToNormedR1
populationCoveringNumber, populationMetricNorm, populationSupremumCoveringNumber, populationSupremumMetricNorm, sampleCoveringNumber, sampleSupremumCoveringNumber
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Method Details
-
agnosticUpperBound
public double agnosticUpperBound()Retrieve the Agnostic Upper Bound of the Eigen-Function- Returns:
- The Agnostic Upper Bound of the Eigen-Function
-