Package org.drip.learning.regularization
Class RegularizerRdCombinatorialToR1Continuous
java.lang.Object
org.drip.spaces.rxtor1.NormedRxToNormedR1
org.drip.spaces.rxtor1.NormedRdToNormedR1
org.drip.spaces.rxtor1.NormedRdCombinatorialToR1Continuous
org.drip.learning.regularization.RegularizerRdCombinatorialToR1Continuous
- All Implemented Interfaces:
RegularizerRdToR1
public class RegularizerRdCombinatorialToR1Continuous extends NormedRdCombinatorialToR1Continuous implements RegularizerRdToR1
RegularizerRdCombinatorialToR1Continuous computes the Structural Loss and Risk for the specified
Normed Rd Combinatorial To Normed R1 Continuous Learning Function.
- Alon, N., S. Ben-David, N. Cesa Bianchi, and D. Haussler (1997): Scale-sensitive Dimensions, Uniform Convergence, and Learnability Journal of Association of Computational Machinery 44 (4) 615-631
- Anthony, M., and P. L. Bartlett (1999): Artificial Neural Network Learning - Theoretical Foundations Cambridge University Press Cambridge, UK
- Kearns, M. J., R. E. Schapire, and L. M. Sellie (1994): Towards Efficient Agnostic Learning Machine Learning 17 (2) 115-141
- Lee, W. S., P. L. Bartlett, and R. C. Williamson (1998): The Importance of Convexity in Learning with Squared Loss IEEE Transactions on Information Theory 44 1974-1980
- Vapnik, V. N. (1998): Statistical learning Theory Wiley New York
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Statistical Learning Empirical Loss Regularizer
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description RegularizerRdCombinatorialToR1Continuous(RdToR1 funcRegularizerRdToR1, RdCombinatorialBanach rdCombinatorialInput, R1Continuous r1ContinuousOutput, double dblLambda)
RegularizerRdCombinatorialToR1Continuous Function Space Constructor -
Method Summary
Modifier and Type Method Description double
lambda()
Retrieve the Regularization Constant Lambdadouble
structuralLoss(RdToR1 funcRdToR1, double[][] aadblX)
Compute the Regularization Sample Structural Lossdouble
structuralRisk(RdR1 distRdR1, RdToR1 funcRdToR1, double[][] aadblX, double[] adblY)
Compute the Regularization Sample Structural LossMethods inherited from class org.drip.spaces.rxtor1.NormedRdCombinatorialToR1Continuous
populationMetricNorm
Methods inherited from class org.drip.spaces.rxtor1.NormedRdToNormedR1
function, inputMetricVectorSpace, outputMetricVectorSpace, populationESS, sampleMetricNorm, sampleSupremumNorm
Methods inherited from class org.drip.spaces.rxtor1.NormedRxToNormedR1
populationCoveringNumber, populationSupremumCoveringNumber, populationSupremumMetricNorm, sampleCoveringNumber, sampleSupremumCoveringNumber
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
RegularizerRdCombinatorialToR1Continuous
public RegularizerRdCombinatorialToR1Continuous(RdToR1 funcRegularizerRdToR1, RdCombinatorialBanach rdCombinatorialInput, R1Continuous r1ContinuousOutput, double dblLambda) throws java.lang.ExceptionRegularizerRdCombinatorialToR1Continuous Function Space Constructor- Parameters:
funcRegularizerRdToR1
- The R^d To R^1 Regularizer FunctionrdCombinatorialInput
- The Combinatorial R^d Input Metric Vector Spacer1ContinuousOutput
- The Continuous R^1 Output Metric Vector SpacedblLambda
- The Regularization Lambda- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
lambda
public double lambda()Description copied from interface:RegularizerRdToR1
Retrieve the Regularization Constant Lambda- Specified by:
lambda
in interfaceRegularizerRdToR1
- Returns:
- The Regularization Constant Lambda
-
structuralLoss
Description copied from interface:RegularizerRdToR1
Compute the Regularization Sample Structural Loss- Specified by:
structuralLoss
in interfaceRegularizerRdToR1
- Parameters:
funcRdToR1
- R^d To R^1 Function InstanceaadblX
- The Sample Instance- Returns:
- The Regularization Sample Structural Loss
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
structuralRisk
public double structuralRisk(RdR1 distRdR1, RdToR1 funcRdToR1, double[][] aadblX, double[] adblY) throws java.lang.ExceptionDescription copied from interface:RegularizerRdToR1
Compute the Regularization Sample Structural Loss- Specified by:
structuralRisk
in interfaceRegularizerRdToR1
- Parameters:
distRdR1
- R^d R^1 Multivariate MeasurefuncRdToR1
- R^d To R^1 Function InstanceaadblX
- The Sample InstanceadblY
- The Response Instance- Returns:
- The Regularization Sample Structural Loss
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-