Package org.drip.measure.exponential
Class R1ScaledDistribution
java.lang.Object
org.drip.measure.continuous.R1Univariate
org.drip.measure.exponential.R1ScaledDistribution
public class R1ScaledDistribution extends R1Univariate
R1ScaledDistribution implements the Probability Density Function for the Scaled R1
Exponential Function. The References are:
- Gradshteyn, I. S., I. M. Ryzhik, Y. V. Geronimus, M. Y. Tseytlin, and A. Jeffrey (2015): Tables of Integrals, Series, and Products Academic Press
- Hilfer, J. (2002): H-function Representations for Stretched Exponential Relaxation and non-Debye Susceptibilities in Glassy Systems Physical Review E 65 (6) 061510
- Wikipedia (2019): Stretched Exponential Function https://en.wikipedia.org/wiki/Stretched_exponential_function
- Wuttke, J. (2012): Laplace-Fourier Transform of the Stretched Exponential Function: Analytic Error-Bounds, Double Exponential Transform, and Open Source Implementation libkw Algorithm 5 (4) 604-628
- Zorn, R. (2002): Logarithmic Moments of Relaxation Time Distributions Journal of Chemical Physics 116 (8) 3204-3209
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Rd Continuous/Discrete Probability Measures
- Package = R1 and Rd Continuous Random Measure
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description R1ScaledDistribution(ScaledExponentialEstimator scaledExponentialEstimator, R1ToR1 gammaEstimator)
R1ScaledDistribution Constructor -
Method Summary
Modifier and Type Method Description double
cumulative(double t)
Compute the cumulative under the distribution to the given valuedouble
density(double t)
Compute the Density under the Distribution at the given VariateR1ToR1
gammaEstimator()
Retrieve the Gamma Estimatordouble
incremental(double t1, double t2)
Compute the Incremental under the Distribution between the 2 variatesdouble
lambda()
Retrieve the "Lambda" Parameterdouble
mean()
Retrieve the Mean of the Distributiondouble
normalizer()
Retrieve the NormalizerScaledExponentialEstimator
scaledExponentialEstimator()
Retrieve the Scaled Exponential Estimatordouble[]
support()
Lay out the Support of the PDF Rangedouble
variance()
Retrieve the Variance of the DistributionMethods inherited from class org.drip.measure.continuous.R1Univariate
bPOE, centralMoment, cvar, differentialEntropy, excessKurtosis, expectedShortfall, fisherInformation, histogram, invCumulative, iqr, kullbackLeiblerDivergence, median, mode, momentGeneratingFunction, nonCentralMoment, populationCentralMeasures, probabilityGeneratingFunction, quantile, random, randomArray, skewness, supported, tukeyAnomaly, tukeyCriterion
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
R1ScaledDistribution
public R1ScaledDistribution(ScaledExponentialEstimator scaledExponentialEstimator, R1ToR1 gammaEstimator) throws java.lang.ExceptionR1ScaledDistribution Constructor- Parameters:
scaledExponentialEstimator
- Scaled Exponential EstimatorgammaEstimator
- Gamma Estimator- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
scaledExponentialEstimator
Retrieve the Scaled Exponential Estimator- Returns:
- Scaled Exponential Estimator
-
gammaEstimator
Retrieve the Gamma Estimator- Returns:
- Gamma Estimator
-
support
public double[] support()Description copied from class:R1Univariate
Lay out the Support of the PDF Range- Specified by:
support
in classR1Univariate
- Returns:
- Support of the PDF Range
-
density
public double density(double t) throws java.lang.ExceptionDescription copied from class:R1Univariate
Compute the Density under the Distribution at the given Variate- Specified by:
density
in classR1Univariate
- Parameters:
t
- Variate at which the Density needs to be computed- Returns:
- The Density
- Throws:
java.lang.Exception
- Thrown if the input is invalid
-
cumulative
public double cumulative(double t) throws java.lang.ExceptionDescription copied from class:R1Univariate
Compute the cumulative under the distribution to the given value- Specified by:
cumulative
in classR1Univariate
- Parameters:
t
- Variate to which the cumulative is to be computed- Returns:
- The cumulative
- Throws:
java.lang.Exception
- Thrown if the inputs are invalid
-
incremental
public double incremental(double t1, double t2) throws java.lang.ExceptionDescription copied from class:R1Univariate
Compute the Incremental under the Distribution between the 2 variates- Overrides:
incremental
in classR1Univariate
- Parameters:
t1
- Left Variate to which the cumulative is to be computedt2
- Right Variate to which the cumulative is to be computed- Returns:
- The Incremental under the Distribution between the 2 variates
- Throws:
java.lang.Exception
- Thrown if the inputs are invalid
-
mean
public double mean() throws java.lang.ExceptionDescription copied from class:R1Univariate
Retrieve the Mean of the Distribution- Specified by:
mean
in classR1Univariate
- Returns:
- The Mean of the Distribution
- Throws:
java.lang.Exception
- Thrown if the Mean cannot be estimated
-
variance
public double variance() throws java.lang.ExceptionDescription copied from class:R1Univariate
Retrieve the Variance of the Distribution- Specified by:
variance
in classR1Univariate
- Returns:
- The Variance of the Distribution
- Throws:
java.lang.Exception
- Thrown if the Variance cannot be estimated
-
normalizer
public double normalizer()Retrieve the Normalizer- Returns:
- Normalizer
-
lambda
public double lambda()Retrieve the "Lambda" Parameter- Returns:
- "Lambda" Parameter
-