Package org.drip.measure.exponential
Class TwoIIDSum
java.lang.Object
org.drip.measure.continuous.R1Univariate
org.drip.measure.exponential.TwoIIDSum
public class TwoIIDSum extends R1Univariate
TwoIIDSum implements the PDF of the Sum of Two IID Exponential Random Variables. The References
are:
- Devroye, L. (1986): Non-Uniform Random Variate Generation Springer-Verlag New York
- Exponential Distribution (2019): Exponential Distribution https://en.wikipedia.org/wiki/Exponential_distribution
- Norton, M., V. Khokhlov, and S. Uryasev (2019): Calculating CVaR and bPOE for Common Probability Distributions with Application to Portfolio Optimization and Density Estimation Annals of Operations Research 299 (1-2) 1281-1315
- Ross, S. M. (2009): Introduction to Probability and Statistics for Engineers and Scientists 4th Edition Associated Press New York, NY
- Schmidt, D. F., and D. Makalic (2009): Universal Models for the Exponential Distribution IEEE Transactions on Information Theory 55 (7) 3087-3090
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Rd Continuous/Discrete Probability Measures
- Package = R1 Exponential Distribution Implementation/Properties
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description TwoIIDSum(R1RateDistribution firstR1RateDistribution, R1RateDistribution secondR1RateDistribution)TwoIIDSum Constructor -
Method Summary
Modifier and Type Method Description doublecumulative(double upper)Compute the cumulative under the distribution to the given valuedoubledensity(double t)Compute the Density under the Distribution at the given VariatedoubledifferentialEntropy()Retrieve the Differential Entropy of the DistributionR1RateDistributionlargerR1RateDistribution()Retrieve the Larger Exponential Distributiondoublemean()Retrieve the Mean of the Distributiondoublemode()Retrieve the Mode of the DistributionR1RateDistributionsmallerR1RateDistribution()Retrieve the Smaller Exponential Distributiondouble[]support()Lay out the Support of the PDF Rangedoublevariance()Retrieve the Variance of the DistributionMethods inherited from class org.drip.measure.continuous.R1Univariate
bPOE, centralMoment, cvar, excessKurtosis, expectedShortfall, fisherInformation, histogram, incremental, invCumulative, iqr, kullbackLeiblerDivergence, median, momentGeneratingFunction, nonCentralMoment, populationCentralMeasures, probabilityGeneratingFunction, quantile, random, randomArray, skewness, supported, tukeyAnomaly, tukeyCriterionMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
TwoIIDSum
public TwoIIDSum(R1RateDistribution firstR1RateDistribution, R1RateDistribution secondR1RateDistribution) throws java.lang.ExceptionTwoIIDSum Constructor- Parameters:
firstR1RateDistribution- First R1 Exponential DistributionsecondR1RateDistribution- Second R1 Exponential Distribution- Throws:
java.lang.Exception- Thrown if Inputs are Invalid
-
-
Method Details
-
largerR1RateDistribution
Retrieve the Larger Exponential Distribution- Returns:
- The Larger Exponential Distribution
-
smallerR1RateDistribution
Retrieve the Smaller Exponential Distribution- Returns:
- The Smaller Exponential Distribution
-
support
public double[] support()Description copied from class:R1UnivariateLay out the Support of the PDF Range- Specified by:
supportin classR1Univariate- Returns:
- Support of the PDF Range
-
density
public double density(double t) throws java.lang.ExceptionDescription copied from class:R1UnivariateCompute the Density under the Distribution at the given Variate- Specified by:
densityin classR1Univariate- Parameters:
t- Variate at which the Density needs to be computed- Returns:
- The Density
- Throws:
java.lang.Exception- Thrown if the input is invalid
-
mean
public double mean() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Mean of the Distribution- Specified by:
meanin classR1Univariate- Returns:
- The Mean of the Distribution
- Throws:
java.lang.Exception- Thrown if the Mean cannot be estimated
-
mode
public double mode() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Mode of the Distribution- Overrides:
modein classR1Univariate- Returns:
- The Mode of the Distribution
- Throws:
java.lang.Exception- Thrown if the Mode cannot be estimated
-
variance
public double variance() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Variance of the Distribution- Specified by:
variancein classR1Univariate- Returns:
- The Variance of the Distribution
- Throws:
java.lang.Exception- Thrown if the Variance cannot be estimated
-
cumulative
public double cumulative(double upper) throws java.lang.ExceptionDescription copied from class:R1UnivariateCompute the cumulative under the distribution to the given value- Specified by:
cumulativein classR1Univariate- Parameters:
upper- Variate to which the cumulative is to be computed- Returns:
- The cumulative
- Throws:
java.lang.Exception- Thrown if the inputs are invalid
-
differentialEntropy
public double differentialEntropy() throws java.lang.ExceptionDescription copied from class:R1UnivariateRetrieve the Differential Entropy of the Distribution- Overrides:
differentialEntropyin classR1Univariate- Returns:
- The Differential Entropy of the Distribution
- Throws:
java.lang.Exception- Thrown if the Entropy cannot be estimated
-