Package org.drip.measure.gamma
Class R1ShapeScaleComposite
java.lang.Object
org.drip.measure.gamma.R1ShapeScaleComposite
public class R1ShapeScaleComposite
extends java.lang.Object
R1ShapeScaleComposite implements the Scale-Scale Composite Measures. The References are:
- Devroye, L. (1986): Non-Uniform Random Variate Generation Springer-Verlag New York
- Gamma Distribution (2019): Gamma Distribution https://en.wikipedia.org/wiki/Chi-squared_distribution
- Louzada, F., P. L. Ramos, and E. Ramos (2019): A Note on Bias of Closed-Form Estimators for the Gamma Distribution Derived From Likelihood Equations The American Statistician 73 (2) 195-199
- Minka, T. (2002): Estimating a Gamma distribution https://tminka.github.io/papers/minka-gamma.pdf
- Ye, Z. S., and N. Chen (2017): Closed-Form Estimators for the Gamma Distribution Derived from Likelihood Equations The American Statistician 71 (2) 177-181
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Rd Continuous/Discrete Probability Measures
- Package = R1 Gamma Distribution Implementation/Properties
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description R1ShapeScaleComposite()
-
Method Summary
Modifier and Type Method Description static double
KullbackLieblerDivergence(R1ShapeScaleDistribution gammaDistribution1, R1ShapeScaleDistribution gammaDistribution2)
Compute the Kullback-Liebler Divergence for the Gamma Distribution Pairstatic double
RandomBeta(R1ShapeScaleDiscrete gammaDistribution1, R1ShapeScaleDiscrete gammaDistribution2)
Generate a Random Number that follows the Beta Distributionstatic double
RandomBetaPrime(R1ShapeScaleDiscrete gammaDistribution1, R1ShapeScaleDiscrete gammaDistribution2)
Generate a Random Number that follows the Beta Prime Distributionstatic double[]
RandomDirichletVector(R1ShapeScaleDiscrete[] gammaDistributionArray)
Generate a Random Vector that follows the Dirichlet Distributionstatic double
RandomF(R1ShapeScaleDiscrete gammaDistribution1, R1ShapeScaleDiscrete gammaDistribution2)
Generate a Random Number that follows the F DistributionMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
R1ShapeScaleComposite
public R1ShapeScaleComposite()
-
-
Method Details
-
RandomF
public static final double RandomF(R1ShapeScaleDiscrete gammaDistribution1, R1ShapeScaleDiscrete gammaDistribution2) throws java.lang.ExceptionGenerate a Random Number that follows the F Distribution- Parameters:
gammaDistribution1
- Gamma Distribution #1gammaDistribution2
- Gamma Distribution #2- Returns:
- Random Number that follows the F Distribution
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
RandomBetaPrime
public static final double RandomBetaPrime(R1ShapeScaleDiscrete gammaDistribution1, R1ShapeScaleDiscrete gammaDistribution2) throws java.lang.ExceptionGenerate a Random Number that follows the Beta Prime Distribution- Parameters:
gammaDistribution1
- Gamma Distribution #1gammaDistribution2
- Gamma Distribution #2- Returns:
- Random Number that follows the Beta Prime Distribution
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
RandomBeta
public static final double RandomBeta(R1ShapeScaleDiscrete gammaDistribution1, R1ShapeScaleDiscrete gammaDistribution2) throws java.lang.ExceptionGenerate a Random Number that follows the Beta Distribution- Parameters:
gammaDistribution1
- Gamma Distribution #1gammaDistribution2
- Gamma Distribution #2- Returns:
- Random Number that follows the Beta Distribution
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
RandomDirichletVector
Generate a Random Vector that follows the Dirichlet Distribution- Parameters:
gammaDistributionArray
- Gamma Distribution Array- Returns:
- Random Vector that follows the Dirichlet Distribution
-
KullbackLieblerDivergence
public static final double KullbackLieblerDivergence(R1ShapeScaleDistribution gammaDistribution1, R1ShapeScaleDistribution gammaDistribution2) throws java.lang.ExceptionCompute the Kullback-Liebler Divergence for the Gamma Distribution Pair- Parameters:
gammaDistribution1
- Gamma Distribution #1gammaDistribution2
- Gamma Distribution #2- Returns:
- The Kullback-Liebler Divergence for the Gamma Distribution Pair
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-