Class JordanNormalJ

java.lang.Object
org.drip.numerical.decomposition.JordanNormalJ

public class JordanNormalJ
extends java.lang.Object
JordanNormalJ implements the J in the Jordan Normal Form Matrix VJV-1. The References are:

  • Dunford, N., and J. Schwartz (1963): Linear Operators II: Spectral Theory: Self-adjoint Operators in the Hilbert Space Wiley Interscience Hoboken NJ
  • Gradshteyn, I. S., I. M. Ryzhik, Y. V. Geronimus, M. Y. Tseytlin, and A. Jeffrey (2015): Tables of Integrals, Series, and Products Academic Press Cambridge MA
  • Guo, J. M., Z. W. Wang, and X. Li (2019): Sharp Upper Bounds of the Spectral Radius of a Graph Discrete Mathematics 342 (9) 2559-2563
  • Lax, P. D. (2002): Functional Analysis Wiley Interscience Hoboken NJ
  • Wikipedia (2024): Spectral Radius https://en.wikipedia.org/wiki/Spectral_radius




Author:
Lakshmi Krishnamurthy
  • Constructor Summary

    Constructors
    Constructor Description
    JordanNormalJ​(JordanNormalJSubM[] jSubMArray)
    JordanNormalJ Constructor
  • Method Summary

    Modifier and Type Method Description
    boolean isDiagonal()
    Is this Diagonal
    JordanNormalJSubM[] jSubMArray()
    Retrieve the JSubM Array
    double[][] power​(int k)
    J to the power of k
    double[][] r1Grid()
    Retrieve the R1 Grid

    Methods inherited from class java.lang.Object

    equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • JordanNormalJ

      public JordanNormalJ​(JordanNormalJSubM[] jSubMArray) throws java.lang.Exception
      JordanNormalJ Constructor
      Parameters:
      jSubMArray - JSubM Array
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • jSubMArray

      public JordanNormalJSubM[] jSubMArray()
      Retrieve the JSubM Array
      Returns:
      The JSubM Array
    • r1Grid

      public double[][] r1Grid()
      Retrieve the R1 Grid
      Returns:
      The R1 Grid
    • power

      public double[][] power​(int k)
      J to the power of k
      Parameters:
      k - K
      Returns:
      J to the power of k
    • isDiagonal

      public boolean isDiagonal()
      Is this Diagonal
      Returns:
      YES - This is Diagonal