Package org.drip.numerical.estimation
Interface R1ToR1IntegrandGenerator
public interface R1ToR1IntegrandGenerator
R1ToR1IntegrandGenerator exposes the Integrand Generation behind the R1 - R1
Approximate Numerical Estimators. The References are:
- Mortici, C. (2011): Improved Asymptotic Formulas for the Gamma Function Computers and Mathematics with Applications 61 (11) 3364-3369
- National Institute of Standards and Technology (2018): NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/5.11
- Nemes, G. (2010): On the Coefficients of the Asymptotic Expansion of n! https://arxiv.org/abs/1003.2907 arXiv
- Toth V. T. (2016): Programmable Calculators – The Gamma Function http://www.rskey.org/CMS/index.php/the-library/11
- Wikipedia (2019): Stirling's Approximation https://en.wikipedia.org/wiki/Stirling%27s_approximation
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Modifier and Type Method Description R1ToR1Estimator
integrand(double z)
Generate the R1 - R1 Integrand given the Parametric Variable
-
Method Details
-
integrand
Generate the R1 - R1 Integrand given the Parametric Variable- Parameters:
z
- The Parametric Variable- Returns:
- The R1 - R1 Integrand
-