Class R1ToR1Integrator

java.lang.Object
org.drip.numerical.integration.R1ToR1Integrator

public class R1ToR1Integrator
extends java.lang.Object
R1ToR1Integrator implements the following routines for integrating the R1 To R1 objective Function.

  • Linear Quadrature
  • Mid-Point Scheme
  • Trapezoidal Scheme
  • Simpson/Simpson38 schemes
  • Boole Scheme




Author:
Lakshmi Krishnamurthy
  • Constructor Summary

    Constructors
    Constructor Description
    R1ToR1Integrator()  
  • Method Summary

    Modifier and Type Method Description
    static double Boole​(R1ToR1 funcR1ToR1, double dblLeft, double dblRight)
    Compute the function's integral within the specified limits using the Boole rule.
    static double LeftInfinite​(R1ToR1 funcR1ToR1, double dblRight)
    Integrate the specified Function Numerically from -infinity to the specified Right Limit
    static double LeftInfiniteRightInfinite​(R1ToR1 funcR1ToR1)
    Integrate Numerically over [-infinity, +infinity] using a Change of Variables
    static double LinearQuadrature​(R1ToR1 funcR1ToR1, double dblLeft, double dblRight)
    Compute the function's integral within the specified limits using the LinearQuadrature technique.
    static double MidPoint​(R1ToR1 funcR1ToR1, double dblLeft, double dblRight)
    Compute the function's integral within the specified limits using the Mid-point rule.
    static double RightInfinite​(R1ToR1 funcR1ToR1, double dblLeft)
    Integrate the specified Function Numerically from the specified Left Limit to +infinity
    static double Simpson​(R1ToR1 funcR1ToR1, double dblLeft, double dblRight)
    Compute the function's integral within the specified limits using the Simpson rule.
    static double Simpson38​(R1ToR1 funcR1ToR1, double dblLeft, double dblRight)
    Compute the function's integral within the specified limits using the Simpson 3/8 rule.
    static double Trapezoidal​(R1ToR1 funcR1ToR1, double dblLeft, double dblRight)
    Compute the function's integral within the specified limits using the Trapezoidal rule.

    Methods inherited from class java.lang.Object

    equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • R1ToR1Integrator

      public R1ToR1Integrator()
  • Method Details

    • LinearQuadrature

      public static final double LinearQuadrature​(R1ToR1 funcR1ToR1, double dblLeft, double dblRight) throws java.lang.Exception
      Compute the function's integral within the specified limits using the LinearQuadrature technique.
      Parameters:
      funcR1ToR1 - R1ToR1 Function
      dblLeft - Left Variate
      dblRight - Right Variate
      Returns:
      The Integral
      Throws:
      java.lang.Exception - Thrown if the error cannot be computed
    • MidPoint

      public static final double MidPoint​(R1ToR1 funcR1ToR1, double dblLeft, double dblRight) throws java.lang.Exception
      Compute the function's integral within the specified limits using the Mid-point rule.
      Parameters:
      funcR1ToR1 - R1ToR1 Function
      dblLeft - Left Variate
      dblRight - Right Variate
      Returns:
      The Integral
      Throws:
      java.lang.Exception - Thrown if the error cannot be computed
    • Trapezoidal

      public static final double Trapezoidal​(R1ToR1 funcR1ToR1, double dblLeft, double dblRight) throws java.lang.Exception
      Compute the function's integral within the specified limits using the Trapezoidal rule.
      Parameters:
      funcR1ToR1 - R1ToR1 Function
      dblLeft - Left Variate
      dblRight - Right Variate
      Returns:
      The Integral
      Throws:
      java.lang.Exception - Thrown if the error cannot be computed
    • Simpson

      public static final double Simpson​(R1ToR1 funcR1ToR1, double dblLeft, double dblRight) throws java.lang.Exception
      Compute the function's integral within the specified limits using the Simpson rule.
      Parameters:
      funcR1ToR1 - R1ToR1 Function
      dblLeft - Left Variate
      dblRight - Right Variate
      Returns:
      The Integral
      Throws:
      java.lang.Exception - Thrown if the error cannot be computed
    • Simpson38

      public static final double Simpson38​(R1ToR1 funcR1ToR1, double dblLeft, double dblRight) throws java.lang.Exception
      Compute the function's integral within the specified limits using the Simpson 3/8 rule.
      Parameters:
      funcR1ToR1 - R1ToR1 Function
      dblLeft - Left Variate
      dblRight - Right Variate
      Returns:
      The Integral
      Throws:
      java.lang.Exception - Thrown if the error cannot be computed
    • Boole

      public static final double Boole​(R1ToR1 funcR1ToR1, double dblLeft, double dblRight) throws java.lang.Exception
      Compute the function's integral within the specified limits using the Boole rule.
      Parameters:
      funcR1ToR1 - R1ToR1 Function
      dblLeft - Left Variate
      dblRight - Right Variate
      Returns:
      The Integral
      Throws:
      java.lang.Exception - Thrown if the error cannot be computed
    • LeftInfiniteRightInfinite

      public static final double LeftInfiniteRightInfinite​(R1ToR1 funcR1ToR1) throws java.lang.Exception
      Integrate Numerically over [-infinity, +infinity] using a Change of Variables
      Parameters:
      funcR1ToR1 - The R1ToR1 Function
      Returns:
      The Numerical Integrand
      Throws:
      java.lang.Exception - Thrown if the Integral cannot be computed
    • LeftInfinite

      public static final double LeftInfinite​(R1ToR1 funcR1ToR1, double dblRight) throws java.lang.Exception
      Integrate the specified Function Numerically from -infinity to the specified Right Limit
      Parameters:
      funcR1ToR1 - The Input R1ToR1 Function
      dblRight - The Right Integration Limit
      Returns:
      The Results of the Integration
      Throws:
      java.lang.Exception - Thrown if the Integrand cannot be evaluated
    • RightInfinite

      public static final double RightInfinite​(R1ToR1 funcR1ToR1, double dblLeft) throws java.lang.Exception
      Integrate the specified Function Numerically from the specified Left Limit to +infinity
      Parameters:
      funcR1ToR1 - The Input R1ToR1 Function
      dblLeft - The Left Integration Limit
      Returns:
      The Results of the Integration
      Throws:
      java.lang.Exception - Thrown if the Integrand cannot be evaluated