Package org.drip.numerical.integration
Class R1ToR1Integrator
java.lang.Object
org.drip.numerical.integration.R1ToR1Integrator
public class R1ToR1Integrator
extends java.lang.Object
R1ToR1Integrator implements the following routines for integrating the R1 To
R1 objective Function.
- Linear Quadrature
- Mid-Point Scheme
- Trapezoidal Scheme
- Simpson/Simpson38 schemes
- Boole Scheme
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities
- Package = R1 Rd Numerical Integration Schemes
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description R1ToR1Integrator()
-
Method Summary
Modifier and Type Method Description static double
Boole(R1ToR1 funcR1ToR1, double dblLeft, double dblRight)
Compute the function's integral within the specified limits using the Boole rule.static double
LeftInfinite(R1ToR1 funcR1ToR1, double dblRight)
Integrate the specified Function Numerically from -infinity to the specified Right Limitstatic double
LeftInfiniteRightInfinite(R1ToR1 funcR1ToR1)
Integrate Numerically over [-infinity, +infinity] using a Change of Variablesstatic double
LinearQuadrature(R1ToR1 funcR1ToR1, double dblLeft, double dblRight)
Compute the function's integral within the specified limits using the LinearQuadrature technique.static double
MidPoint(R1ToR1 funcR1ToR1, double dblLeft, double dblRight)
Compute the function's integral within the specified limits using the Mid-point rule.static double
RightInfinite(R1ToR1 funcR1ToR1, double dblLeft)
Integrate the specified Function Numerically from the specified Left Limit to +infinitystatic double
Simpson(R1ToR1 funcR1ToR1, double dblLeft, double dblRight)
Compute the function's integral within the specified limits using the Simpson rule.static double
Simpson38(R1ToR1 funcR1ToR1, double dblLeft, double dblRight)
Compute the function's integral within the specified limits using the Simpson 3/8 rule.static double
Trapezoidal(R1ToR1 funcR1ToR1, double dblLeft, double dblRight)
Compute the function's integral within the specified limits using the Trapezoidal rule.Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
R1ToR1Integrator
public R1ToR1Integrator()
-
-
Method Details
-
LinearQuadrature
public static final double LinearQuadrature(R1ToR1 funcR1ToR1, double dblLeft, double dblRight) throws java.lang.ExceptionCompute the function's integral within the specified limits using the LinearQuadrature technique.- Parameters:
funcR1ToR1
- R1ToR1 FunctiondblLeft
- Left VariatedblRight
- Right Variate- Returns:
- The Integral
- Throws:
java.lang.Exception
- Thrown if the error cannot be computed
-
MidPoint
public static final double MidPoint(R1ToR1 funcR1ToR1, double dblLeft, double dblRight) throws java.lang.ExceptionCompute the function's integral within the specified limits using the Mid-point rule.- Parameters:
funcR1ToR1
- R1ToR1 FunctiondblLeft
- Left VariatedblRight
- Right Variate- Returns:
- The Integral
- Throws:
java.lang.Exception
- Thrown if the error cannot be computed
-
Trapezoidal
public static final double Trapezoidal(R1ToR1 funcR1ToR1, double dblLeft, double dblRight) throws java.lang.ExceptionCompute the function's integral within the specified limits using the Trapezoidal rule.- Parameters:
funcR1ToR1
- R1ToR1 FunctiondblLeft
- Left VariatedblRight
- Right Variate- Returns:
- The Integral
- Throws:
java.lang.Exception
- Thrown if the error cannot be computed
-
Simpson
public static final double Simpson(R1ToR1 funcR1ToR1, double dblLeft, double dblRight) throws java.lang.ExceptionCompute the function's integral within the specified limits using the Simpson rule.- Parameters:
funcR1ToR1
- R1ToR1 FunctiondblLeft
- Left VariatedblRight
- Right Variate- Returns:
- The Integral
- Throws:
java.lang.Exception
- Thrown if the error cannot be computed
-
Simpson38
public static final double Simpson38(R1ToR1 funcR1ToR1, double dblLeft, double dblRight) throws java.lang.ExceptionCompute the function's integral within the specified limits using the Simpson 3/8 rule.- Parameters:
funcR1ToR1
- R1ToR1 FunctiondblLeft
- Left VariatedblRight
- Right Variate- Returns:
- The Integral
- Throws:
java.lang.Exception
- Thrown if the error cannot be computed
-
Boole
public static final double Boole(R1ToR1 funcR1ToR1, double dblLeft, double dblRight) throws java.lang.ExceptionCompute the function's integral within the specified limits using the Boole rule.- Parameters:
funcR1ToR1
- R1ToR1 FunctiondblLeft
- Left VariatedblRight
- Right Variate- Returns:
- The Integral
- Throws:
java.lang.Exception
- Thrown if the error cannot be computed
-
LeftInfiniteRightInfinite
Integrate Numerically over [-infinity, +infinity] using a Change of Variables- Parameters:
funcR1ToR1
- The R1ToR1 Function- Returns:
- The Numerical Integrand
- Throws:
java.lang.Exception
- Thrown if the Integral cannot be computed
-
LeftInfinite
public static final double LeftInfinite(R1ToR1 funcR1ToR1, double dblRight) throws java.lang.ExceptionIntegrate the specified Function Numerically from -infinity to the specified Right Limit- Parameters:
funcR1ToR1
- The Input R1ToR1 FunctiondblRight
- The Right Integration Limit- Returns:
- The Results of the Integration
- Throws:
java.lang.Exception
- Thrown if the Integrand cannot be evaluated
-
RightInfinite
public static final double RightInfinite(R1ToR1 funcR1ToR1, double dblLeft) throws java.lang.ExceptionIntegrate the specified Function Numerically from the specified Left Limit to +infinity- Parameters:
funcR1ToR1
- The Input R1ToR1 FunctiondblLeft
- The Left Integration Limit- Returns:
- The Results of the Integration
- Throws:
java.lang.Exception
- Thrown if the Integrand cannot be evaluated
-