Package org.drip.numerical.matrix
Class R1Tridiagonal
java.lang.Object
org.drip.numerical.matrix.R1Square
org.drip.numerical.matrix.R1Tridiagonal
- Direct Known Subclasses:
R1NonPeriodicTridiagonal
,R1PeriodicTridiagonal
public abstract class R1Tridiagonal extends R1Square
R1Tridiagonal abstracts the R1 Tridiagonal Matrix based on Periodic/non-Periodic setup.
The References are:
- Batista, M., and A. R. A. Ibrahim-Karawia (2009): The use of Sherman-Morrison-Woodbury formula to solve cyclic block tridiagonal and cyclic block penta-diagonal linear systems of equations Applied Mathematics of Computation 210 (2) 558-563
- Datta, B. N. (2010): Numerical Linear Algebra and Applications 2nd Edition SIAM Philadelphia, PA
- Gallopoulos, E., B. Phillippe, and A. H. Sameh (2016): Parallelism in Matrix Computations Spring Berlin, Germany
- Niyogi, P. (2006): Introduction to Computational Fluid Dynamics Pearson London, UK
- Wikipedia (2024): Tridiagonal Matrix Algorithm https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
- Module = Computational Core Module
- Library = Numerical Analysis Library
- Project = Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities
- Package = Implementation of R1 C1 Matrices
- Author:
- Lakshmi Krishnamurthy
-
Method Summary
Methods inherited from class org.drip.numerical.matrix.R1Square
add, characteristicPolynomial, conditionNumberL2, defaultConditionNumber, determinant, diagonalEntryArray, eigenize, eigenValueMultiplicityMap, isNormal, isTriangularizable, multiply, multiply, power, qrDecomposition, r1Grid, rqDecomposition, scale, size, spectralRadius, Standard, subtract, svd, svdBasedFrobeniusNorm, trace, transpose
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait