Package org.drip.sample.erfx

E2 erfc and erfi Estimation
Author:
Lakshmi Krishnamurthy
  • Class Summary
    Class Description
    ERFCAsymptoticExpansion
    ERFCAsymptoticExpansion illustrates the Error Function Complement Estimation based on the Asymptotic Expansion of the Error Function Complement Series.
    ERFCChianiDardariSimon2012a
    ERFCChianiDardariSimon2012a illustrates the Error Function Complement Estimation based on the Chiani-Dardari-Simon (2012a) Bounded Analytical Error Function Complement Expression.
    ERFCChianiDardariSimon2012b
    ERFCChianiDardariSimon2012b illustrates the Error Function Complement Estimation based on the Chiani-Dardari-Simon (2012b) Analytical Error Function Complement Expression.
    ERFCContinuedFractionExpansion
    ERFCContinuedFractionExpansion illustrates the Error Function Complement Estimation based on the Continued Fraction Expansion Analytical Error Function Complement Expression.
    ERFCInverseFactorialExpansion
    ERFCInverseFactorialExpansion illustrates the Error Function Complement Estimation based on the Inverse Factorial Expansion Error Function Complement Series.
    ERFCKaragiannidisLioumpas
    ERFCKaragiannidisLioumpas illustrates the Error Function Complement Estimation based on the Karagiannidis-Lioumpas Analytical Error Function Complement Expression.
    ERFIMacLaurin
    ERFIMacLaurin illustrates the Inverse Error Function Estimation using the Euler-MacLaurin Series Inverse Error Function Estimator.
    ERFIMacLaurinGenerator
    ERFIMacLaurinGenerator illustrates the MacLaurin Series Coefficient Generation for the Error Function Inverse.
    ERFIWinitzki2008a
    ERFIWinitzki2008a illustrates the Inverse Error Function Estimation based on the Winitzki (2008a) Analytical Inverse Error Function Estimator.
    ERFIWinitzki2008b
    ERFIWinitzki2008b illustrates the Inverse Error Function Estimation based on the Winitzki (2008b) Analytical Inverse Error Function Estimator.