Package org.drip.sample.erfx
E2 erfc and erfi Estimation
- Author:
- Lakshmi Krishnamurthy
-
Class Summary Class Description ERFCAsymptoticExpansion ERFCAsymptoticExpansion illustrates the Error Function Complement Estimation based on the Asymptotic Expansion of the Error Function Complement Series.ERFCChianiDardariSimon2012a ERFCChianiDardariSimon2012a illustrates the Error Function Complement Estimation based on the Chiani-Dardari-Simon (2012a) Bounded Analytical Error Function Complement Expression.ERFCChianiDardariSimon2012b ERFCChianiDardariSimon2012b illustrates the Error Function Complement Estimation based on the Chiani-Dardari-Simon (2012b) Analytical Error Function Complement Expression.ERFCContinuedFractionExpansion ERFCContinuedFractionExpansion illustrates the Error Function Complement Estimation based on the Continued Fraction Expansion Analytical Error Function Complement Expression.ERFCInverseFactorialExpansion ERFCInverseFactorialExpansion illustrates the Error Function Complement Estimation based on the Inverse Factorial Expansion Error Function Complement Series.ERFCKaragiannidisLioumpas ERFCKaragiannidisLioumpas illustrates the Error Function Complement Estimation based on the Karagiannidis-Lioumpas Analytical Error Function Complement Expression.ERFIMacLaurin ERFIMacLaurin illustrates the Inverse Error Function Estimation using the Euler-MacLaurin Series Inverse Error Function Estimator.ERFIMacLaurinGenerator ERFIMacLaurinGenerator illustrates the MacLaurin Series Coefficient Generation for the Error Function Inverse.ERFIWinitzki2008a ERFIWinitzki2008a illustrates the Inverse Error Function Estimation based on the Winitzki (2008a) Analytical Inverse Error Function Estimator.ERFIWinitzki2008b ERFIWinitzki2008b illustrates the Inverse Error Function Estimation based on the Winitzki (2008b) Analytical Inverse Error Function Estimator.