Package org.drip.sample.matrix
Cholesky Factorization, PCA, and Eigenization
- Author:
- Lakshmi Krishnamurthy
-
Class Summary Class Description CholeskyFactorization CholeskyFactorization demonstrates the Cholesky Factorization and Transpose Reconciliation of the Input Matrix.Eigenization Eigenization demonstrates how to generate the eigenvalue and eigenvector for the Input Matrix.GershgorinAnalysis GershgorinAnalysis illustrates the Analysis of a Square Matrix using Gershgorin Discs.GrahamSchmidtProcess GrahamSchmidtProcess illustrates the Graham Schmidt Orthogonalization and Orthonormalization.LinearAlgebra LinearAlgebra implements Samples for Linear Algebra and Matrix Manipulations.MultivariateRandom MultivariateRandom demonstrates the Technique to generate Correlated Multivariate Random Variables using Cholesky Factorial Method.Power Power displays the Functionality behind Matrix Power Series.PrincipalComponent PrincipalComponent demonstrates how to generate the Principal eigenvalue and eigenvector for the Input Matrix.QRDecomposition QRDecomposition demonstrates the technique to perform a QR Decomposition of the Input Square Matrix into an Orthogonal and an Upper Triangular Counterparts.RayleighQuotient RayleighQuotient demonstrates the Computation of an Approximate to the Eigenvalue using the Rayleigh Quotient.SylvesterInterpolantReconciler SylvesterInterpolantReconciler demonstrates the Construction and Usage of the Sylvester Matrix Interpolant.