Package org.drip.sample.trend
Class BayesianGain
java.lang.Object
org.drip.sample.trend.BayesianGain
public class BayesianGain
extends java.lang.Object
BayesianGain demonstrates the Gains achieved from using an Optimal Trajectory for a Price Process
with Bayesian Drift, Arithmetic Volatility, and Linear Temporary Market Impact across a Set of Drifts.
The References are:
- Almgren, R., and N. Chriss (2000): Optimal Execution of Portfolio Transactions Journal of Risk 3 (2) 5-39
- Almgren, R., and J. Lorenz (2006): Bayesian Adaptive Trading with a Daily Cycle Journal of Trading 1 (4) 38-46
- Bertsimas, D., and A. W. Lo (1998): Optimal Control of Execution Costs Journal of Financial Markets 1 1-50
- Brunnermeier, L. K., and L. H. Pedersen (2005): Predatory Trading Journal of Finance 60 (4) 1825-1863
- Kissell, R., and R. Malamut (2007): Algorithmic Decision Making Framework Journal of Trading 1 (1) 12-21
- Module = Product Core Module
- Library = Transaction Cost Analytics
- Project = DROP API Construction and Usage
- Package = Fixed/Variable Bayesian Drift Gain
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description BayesianGain()
-
Method Summary
Modifier and Type Method Description static void
main(java.lang.String[] astrArgs)
Entry PointMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
BayesianGain
public BayesianGain()
-
-
Method Details
-
main
public static final void main(java.lang.String[] astrArgs) throws java.lang.ExceptionEntry Point- Parameters:
astrArgs
- Command Line Argument Array- Throws:
java.lang.Exception
- Thrown on Error/Exception Situation
-