Package org.drip.sequence.custom
Class KernelDensityEstimationL1
java.lang.Object
org.drip.function.definition.RdToR1
org.drip.sequence.functional.MultivariateRandom
org.drip.sequence.functional.BoundedMultivariateRandom
org.drip.sequence.custom.KernelDensityEstimationL1
public class KernelDensityEstimationL1 extends BoundedMultivariateRandom
KernelDensityEstimationL1 implements the L1 Error Scheme Estimation for a Multivariate Kernel
Density Estimator with Focus on establishing targeted Variate-Specific and Agnostic Bounds.
- Module = Numerical Core Module
- Library = Statistical Learning Library
- Project = Sequence
- Package = Custom
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description KernelDensityEstimationL1(R1ToR1 auKernel, double dblSmoothingParameter, int iSampleSize, R1ToR1 auResponse)KernelDensityEstimationL1 Constructor -
Method Summary
Modifier and Type Method Description intdimension()Retrieve the Dimension of the Input Variatedoubleevaluate(double[] adblVariate)Evaluate for the given Input VariatesR1ToR1kernelFunction()Retrieve the Kernel FunctionR1ToR1responseFunction()Retrieve the Response FunctionintsampleSize()Retrieve the Sample SizedoublesmoothingParameter()Retrieve the Smoothing ParameterdoubletargetVariateVarianceBound(int iTargetVariateIndex)Retrieve the Maximal Agnostic Variance Bound over the Non-target Variate Space for the Target VariateMethods inherited from class org.drip.sequence.functional.MultivariateRandom
conditionalTargetVariateMetrics, conditionalTargetVariateMetrics, ghostTargetVariateMetrics, ghostTargetVariateMetrics, ghostTargetVariateMetrics, unconditionalTargetVariateMetricsMethods inherited from class org.drip.function.definition.RdToR1
conditionNumber, conditionNumberL2, conditionNumberLInfinity, conditionNumberLp, derivative, differential, gradient, gradientModulus, gradientModulusFunction, hessian, integrate, jacobian, maxima, minima, ValidateInputMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
KernelDensityEstimationL1
public KernelDensityEstimationL1(R1ToR1 auKernel, double dblSmoothingParameter, int iSampleSize, R1ToR1 auResponse) throws java.lang.ExceptionKernelDensityEstimationL1 Constructor- Parameters:
auKernel- The Kernel FunctiondblSmoothingParameter- The Smoothing ParameteriSampleSize- The Sample SizeauResponse- The Response Function- Throws:
java.lang.Exception- Thrown if Inputs are Invalid
-
-
Method Details
-
kernelFunction
Retrieve the Kernel Function- Returns:
- The Kernel Function
-
smoothingParameter
public double smoothingParameter()Retrieve the Smoothing Parameter- Returns:
- The Smoothing Parameter
-
sampleSize
public int sampleSize()Retrieve the Sample Size- Returns:
- The Sample Size
-
responseFunction
Retrieve the Response Function- Returns:
- The Response Function
-
dimension
public int dimension()Description copied from class:RdToR1Retrieve the Dimension of the Input Variate -
evaluate
public double evaluate(double[] adblVariate) throws java.lang.ExceptionDescription copied from class:RdToR1Evaluate for the given Input Variates -
targetVariateVarianceBound
public double targetVariateVarianceBound(int iTargetVariateIndex) throws java.lang.ExceptionDescription copied from class:BoundedMultivariateRandomRetrieve the Maximal Agnostic Variance Bound over the Non-target Variate Space for the Target Variate- Specified by:
targetVariateVarianceBoundin classBoundedMultivariateRandom- Parameters:
iTargetVariateIndex- The Index corresponding to the Variate on which the Bound is sought- Returns:
- The Maximal Agnostic Bound over the Non-target Variate Space for the Target Variate
- Throws:
java.lang.Exception- Thrown if the Inputs are invalid
-