Package org.drip.sequence.functional
Class FlatMultivariateRandom
java.lang.Object
org.drip.function.definition.RdToR1
org.drip.sequence.functional.MultivariateRandom
org.drip.sequence.functional.FlatMultivariateRandom
public class FlatMultivariateRandom extends MultivariateRandom
FlatMultivariateRandom contains the Implementation of the Flat Objective Function dependent on
Multivariate Random Variables.
- Module = Numerical Core Module
- Library = Statistical Learning Library
- Project = Sequence
- Package = Functional
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description FlatMultivariateRandom(double dblFlatValue)
FlatMultivariateRandom Constructor -
Method Summary
Methods inherited from class org.drip.sequence.functional.MultivariateRandom
conditionalTargetVariateMetrics, conditionalTargetVariateMetrics, ghostTargetVariateMetrics, ghostTargetVariateMetrics, ghostTargetVariateMetrics, unconditionalTargetVariateMetrics
Methods inherited from class org.drip.function.definition.RdToR1
conditionNumber, conditionNumberL2, conditionNumberLInfinity, conditionNumberLp, derivative, differential, gradient, gradientModulus, gradientModulusFunction, hessian, integrate, jacobian, maxima, minima, ValidateInput
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
FlatMultivariateRandom
public FlatMultivariateRandom(double dblFlatValue) throws java.lang.ExceptionFlatMultivariateRandom Constructor- Parameters:
dblFlatValue
- The Flat Value- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
flatValue
public double flatValue()Retrieve the Flat Value- Returns:
- The Flat Value
-
dimension
public int dimension()Description copied from class:RdToR1
Retrieve the Dimension of the Input Variate -
evaluate
public double evaluate(double[] adblVariate) throws java.lang.ExceptionDescription copied from class:RdToR1
Evaluate for the given Input Variates
-