Uses of Package
org.drip.sequence.functional
Package | Description |
---|---|
org.drip.learning.rxtor1 |
Statistical Learning Empirical Loss Penalizer
|
org.drip.sequence.custom |
Glivenko Cantelli Supremum Deviation Bounds
|
org.drip.sequence.functional |
Efron Stein Functional Supremum Bounds
|
-
Classes in org.drip.sequence.functional used by org.drip.learning.rxtor1 Class Description BoundedMultivariateRandom BoundedMultivariateRandom contains the Implementation of the Bounded Objective Function dependent on Multivariate Random Variables.EfronSteinMetrics EfronSteinMetrics contains the Variance-based non-exponential Sample Distribution/Bounding Metrics and Agnostic Bounds related to the Functional Transformation of the specified Sequence.MultivariateRandom MultivariateRandom contains the implementation of the objective Function dependent on Multivariate Random Variables. -
Classes in org.drip.sequence.functional used by org.drip.sequence.custom Class Description BoundedIdempotentUnivariateRandom BoundedIdempotentUnivariateRandom contains the Implementation of the Objective Function dependent on Bounded Idempotent Univariate Random Variable.BoundedMultivariateRandom BoundedMultivariateRandom contains the Implementation of the Bounded Objective Function dependent on Multivariate Random Variables.FunctionSupremumUnivariateRandom FunctionSupremumUnivariateRandom contains the Implementation of the FunctionClassSupremum Objective Function dependent on Univariate Random Variable.MultivariateRandom MultivariateRandom contains the implementation of the objective Function dependent on Multivariate Random Variables.SeparableMultivariateRandom SeparableMultivariateRandom exposes the Variance of the Objective Function dependent on Multivariate Random Variables where the Multivariate Function is a Linear Combination of Bounded Univariate Functions acting on each Random Variate. -
Classes in org.drip.sequence.functional used by org.drip.sequence.functional Class Description BoundedIdempotentUnivariateRandom BoundedIdempotentUnivariateRandom contains the Implementation of the Objective Function dependent on Bounded Idempotent Univariate Random Variable.IdempotentUnivariateRandom IdempotentUnivariateRandom contains the Implementation of the OffsetIdempotent Objective Function dependent on Univariate Random Variable.MultivariateRandom MultivariateRandom contains the implementation of the objective Function dependent on Multivariate Random Variables.