Package org.drip.spaces.metric
Interface RdNormed
- All Superinterfaces:
GeneralizedMetricVectorSpace
,GeneralizedVector
,RdGeneralizedVector
- All Known Implementing Classes:
RdCombinatorialBall
,RdCombinatorialBanach
,RdCombinatorialHilbert
,RdContinuousBall
,RdContinuousBanach
,RdContinuousHilbert
public interface RdNormed extends GeneralizedMetricVectorSpace, RdGeneralizedVector
RdNormed Abstract Class implements the Normed, Bounded/Unbounded Continuous/Combinatorial
lp Rd Spaces.
- Carl, B., and I. Stephani (1990): Entropy, Compactness, and the Approximation of Operators Cambridge University Press Cambridge UK
- Retrieve the Borel Sigma Rd Probability Measure
- Compute the Supremum Norm of the Sample
- Compute the Metric Norm of the Sample
- Retrieve the Population Mode
- Compute the Population Supremum Norm of the Sample
- Compute the Borel Measure Expectation for the specified Rd To R1 Function over the full Input Space
- Author:
- Lakshmi Krishnamurthy
-
Field Summary
Fields inherited from interface org.drip.spaces.metric.GeneralizedMetricVectorSpace
EUCLIDEAN_NORM, L2_NORM, LINFINITITY_NORM
-
Method Summary
Modifier and Type Method Description double
borelMeasureSpaceExpectation(RdToR1 rdToR1Function)
Compute the Borel Measure Expectation for the specified Rd To R1 Function over the full Input SpaceRd
borelSigmaMeasure()
Retrieve the Borel Sigma Rd Probability Measuredouble[]
populationMode()
Retrieve the Population Modedouble
populationSupremumNorm()
Compute the Population Supremum Norm of the Sampledouble
sampleMetricNorm(double[] x)
Compute the Metric Norm of the Sampledouble
sampleSupremumNorm(double[] x)
Compute the Supremum Norm of the SampleMethods inherited from interface org.drip.spaces.metric.GeneralizedMetricVectorSpace
pNorm, populationMetricNorm
Methods inherited from interface org.drip.spaces.tensor.GeneralizedVector
cardinality, hyperVolume, isPredictorBounded, leftEdge, match, rightEdge, subset
Methods inherited from interface org.drip.spaces.tensor.RdGeneralizedVector
dimension, leftDimensionEdge, rightDimensionEdge, validateInstance, vectorSpaces
-
Method Details
-
borelSigmaMeasure
Rd borelSigmaMeasure()Retrieve the Borel Sigma Rd Probability Measure- Returns:
- The Borel Sigma Rd Probability Measure
-
sampleSupremumNorm
double sampleSupremumNorm(double[] x) throws java.lang.ExceptionCompute the Supremum Norm of the Sample- Parameters:
x
- The Sample- Returns:
- The Supremum Norm of the Sample
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
sampleMetricNorm
double sampleMetricNorm(double[] x) throws java.lang.ExceptionCompute the Metric Norm of the Sample- Parameters:
x
- The Sample- Returns:
- The Metric Norm of the Sample
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
populationMode
double[] populationMode()Retrieve the Population Mode- Returns:
- The Population Mode
-
populationSupremumNorm
double populationSupremumNorm() throws java.lang.ExceptionCompute the Population Supremum Norm of the Sample- Returns:
- The Population Supremum Norm of the Sample
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
borelMeasureSpaceExpectation
Compute the Borel Measure Expectation for the specified Rd To R1 Function over the full Input Space- Parameters:
rdToR1Function
- Rd To R1 Function- Returns:
- The Borel Measure Expectation for the specified Rd To R1 Function over the full Input Space
- Throws:
java.lang.Exception
- Thrown if the Population Mode cannot be calculated
-