Class HankelAsymptoteSeries

java.lang.Object
org.drip.specialfunction.bessel.HankelAsymptoteSeries

public class HankelAsymptoteSeries
extends java.lang.Object
HankelAsymptoteSeries implements the Large z Asymptotic Series used for Estimating the Modified Bessel Functions. The References are:

  • Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions Dover Book on Mathematics
  • Arfken, G. B., and H. J. Weber (2005): Mathematical Methods for Physicists 6th Edition Harcourt San Diego
  • Temme N. M. (1996): Special Functions: An Introduction to the Classical Functions of Mathematical Physics 2nd Edition Wiley New York
  • Watson, G. N. (1995): A Treatise on the Theory of Bessel Functions Cambridge University Press
  • Wikipedia (2019): Bessel Function https://en.wikipedia.org/wiki/Bessel_function
It provides the following functionality:
  • Construct the R2 To R1 Modified Bessel Hankel Asymptote Summation Series

Module Product Core Module
Library Fixed Income Analytics
Project Special Function Implementation and Analysis
Package Ordered Bessel Function Variant Estimators
Author:
Lakshmi Krishnamurthy
  • Constructor Summary

    Constructors
    Constructor Description
    HankelAsymptoteSeries()  
  • Method Summary

    Modifier and Type Method Description
    static R2ToR1Series Summation​(boolean flip, int termCount)
    Construct the R2 To R1 Modified Bessel Hankel Asymptote Summation Series

    Methods inherited from class java.lang.Object

    equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • HankelAsymptoteSeries

      public HankelAsymptoteSeries()
  • Method Details

    • Summation

      public static final R2ToR1Series Summation​(boolean flip, int termCount)
      Construct the R2 To R1 Modified Bessel Hankel Asymptote Summation Series
      Parameters:
      flip - TRUE - Apply the Odd/Even Term Sign Flip
      termCount - Count of the Number of Terms
      Returns:
      The R2 To R1 Modified Bessel Hankel Asymptote Summation Series