Class SphericalHankelSecondKindEstimator
java.lang.Object
org.drip.specialfunction.definition.SphericalHankelSecondKindEstimator
- All Implemented Interfaces:
R2ToZ1
- Direct Known Subclasses:
SmallH2
public abstract class SphericalHankelSecondKindEstimator extends java.lang.Object implements R2ToZ1
SphericalHankelSecondKindEstimator exposes the Estimator for the Spherical Hankel Function of the
Second Kind. The References are:
- Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions Dover Book on Mathematics
- Arfken, G. B., and H. J. Weber (2005): Mathematical Methods for Physicists 6th Edition Harcourt San Diego
- Temme N. M. (1996): Special Functions: An Introduction to the Classical Functions of Mathematical Physics 2nd Edition Wiley New York
- Watson, G. N. (1995): A Treatise on the Theory of Bessel Functions Cambridge University Press
- Wikipedia (2019): Bessel Function https://en.wikipedia.org/wiki/Bessel_function
- Evaluate Spherical Hankel Function First Kind h2 given Alpha and z
Module | Product Core Module |
Library | Fixed Income Analytics |
Project | Special Function Implementation and Analysis |
Package | Definition of Special Function Estimators |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description SphericalHankelSecondKindEstimator()
-
Method Summary
Modifier and Type Method Description C1Cartesian
evaluate(double alpha, double z)
Evaluate for the given variate Pairabstract C1Cartesian
smallH2(double alpha, double z)
Evaluate Spherical Hankel Function Second Kind h2 given Alpha and zMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
SphericalHankelSecondKindEstimator
public SphericalHankelSecondKindEstimator()
-
-
Method Details
-
smallH2
Evaluate Spherical Hankel Function Second Kind h2 given Alpha and z- Parameters:
alpha
- Alphaz
- Z- Returns:
- Spherical Hankel Function Second Kind h2 Value
-
evaluate
Description copied from interface:R2ToZ1
Evaluate for the given variate Pair
-