Package org.drip.specialfunction.gamma
Class StirlingSeries
java.lang.Object
org.drip.function.definition.R1ToR1
org.drip.numerical.estimation.R1ToR1Estimator
org.drip.specialfunction.gamma.StirlingSeries
- Direct Known Subclasses:
RobbinsExtension
public class StirlingSeries extends R1ToR1Estimator
StirlingSeries implements the Stirling's Series Approximation of the Gamma Functions. The
References are:
- Mortici, C. (2011): Improved Asymptotic Formulas for the Gamma Function Computers and Mathematics with Applications 61 (11) 3364-3369
- National Institute of Standards and Technology (2018): NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/5.11
- Nemes, G. (2010): On the Coefficients of the Asymptotic Expansion of n! https://arxiv.org/abs/1003.2907 arXiv
- Toth V. T. (2016): Programmable Calculators – The Gamma Function http://www.rskey.org/CMS/index.php/the-library/11
- Wikipedia (2019): Stirling's Approximation https://en.wikipedia.org/wiki/Stirling%27s_approximation
- StirlingSeries Constructor
- Compute the de-Moivre Term
- Compute the Bounded Function Estimates along with the First Order Laplace Correction
- Compute the Bounded Function Estimates along with the Higher Order Nemes Correction
Module | Computational Core Module |
Library | Function Analysis Library |
Project | Special Function Implementation and Analysis |
Package | Analytic/Series/Integral Gamma Estimators |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description StirlingSeries(DerivativeControl derivativeControl)
StirlingSeries Constructor -
Method Summary
Modifier and Type Method Description R1Estimate
boundedEstimate(double x)
Estimate a Bounded Numerical Approximation of the Function Valuedouble
deMoivreTerm(double x)
Compute the de-Moivre Termdouble
evaluate(double x)
Evaluate for the given variateR1Estimate
laplaceCorrectionEstimate(double x)
Compute the Bounded Function Estimates along with the First Order Laplace CorrectionR1Estimate
nemesCorrectionEstimate(double x)
Compute the Bounded Function Estimates along with the Higher Order Nemes CorrectionMethods inherited from class org.drip.numerical.estimation.R1ToR1Estimator
seriesEstimate, seriesEstimateNative
Methods inherited from class org.drip.function.definition.R1ToR1
antiDerivative, conditionNumber, derivative, differential, differential, integrate, maxima, maxima, minima, minima, poleResidue
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
StirlingSeries
StirlingSeries Constructor- Parameters:
derivativeControl
- The Derivative Control
-
-
Method Details
-
deMoivreTerm
public double deMoivreTerm(double x) throws java.lang.ExceptionCompute the de-Moivre Term- Parameters:
x
- X- Returns:
- The de-Moivre Term
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
evaluate
public double evaluate(double x) throws java.lang.ExceptionDescription copied from class:R1ToR1
Evaluate for the given variate -
boundedEstimate
Description copied from class:R1ToR1Estimator
Estimate a Bounded Numerical Approximation of the Function Value- Overrides:
boundedEstimate
in classR1ToR1Estimator
- Parameters:
x
- X- Returns:
- The Bounded Numerical Approximation
-
laplaceCorrectionEstimate
Compute the Bounded Function Estimates along with the First Order Laplace Correction- Parameters:
x
- X- Returns:
- The Bounded Function Estimates along with the First Order Laplace Correction
-
nemesCorrectionEstimate
Compute the Bounded Function Estimates along with the Higher Order Nemes Correction- Parameters:
x
- X- Returns:
- The Bounded Function Estimates along with the Higher Order Nemes Correction
-