Package org.drip.specialfunction.group
Class MonodromyTransform2F1
java.lang.Object
org.drip.specialfunction.group.MonodromyTransform2F1
public class MonodromyTransform2F1
extends java.lang.Object
MonodromyTransform2F1 builds out the Monodromy Loop Solution Transformation Matrices for Paths
around the Singular Points. The References are:
- Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
- Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
- Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
- National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
- Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
- Generate the Monodromy Group Matrix G0 around the '0' Singularity
- Generate the "Mu" Intermediate for the G1 Monodromy Matrix
- Generate the Monodromy Group Matrix G1 around the '1' Singularity
Module | Computational Core Module |
Library | Function Analysis Library |
Project | Special Function Implementation and Analysis |
Package | Special Function Singularity Solution Group |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description MonodromyTransform2F1()
-
Method Summary
Modifier and Type Method Description static C1Cartesian[][]
G0(FundamentalGroupPathExponent2F1 pathExponent1, FundamentalGroupPathExponent2F1 pathExponent2)
Generate the Monodromy Group Matrix G0 around the '0' Singularitystatic C1Cartesian[][]
G1(FundamentalGroupPathExponent2F1 pathExponent1, FundamentalGroupPathExponent2F1 pathExponent2)
Generate the Monodromy Group Matrix G1 around the '1' Singularitystatic double
G1Mu(FundamentalGroupPathExponent2F1 pathExponent1, FundamentalGroupPathExponent2F1 pathExponent2)
Compute the "Mu" Intermediate for the G1 Monodromy MatrixMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
MonodromyTransform2F1
public MonodromyTransform2F1()
-
-
Method Details
-
G0
public static final C1Cartesian[][] G0(FundamentalGroupPathExponent2F1 pathExponent1, FundamentalGroupPathExponent2F1 pathExponent2)Generate the Monodromy Group Matrix G0 around the '0' Singularity- Parameters:
pathExponent1
- Path Monodromy Exponents of the Fundamental Group #1pathExponent2
- Path Monodromy Exponents of the Fundamental Group #2- Returns:
- The Monodromy Group Matrix G0 around the '0' Singularity
-
G1Mu
public static final double G1Mu(FundamentalGroupPathExponent2F1 pathExponent1, FundamentalGroupPathExponent2F1 pathExponent2) throws java.lang.ExceptionCompute the "Mu" Intermediate for the G1 Monodromy Matrix- Parameters:
pathExponent1
- Path Monodromy Exponents of the Fundamental Group #1pathExponent2
- Path Monodromy Exponents of the Fundamental Group #2- Returns:
- The "Mu" Intermediate for the G1 Monodromy Matrix
- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
G1
public static final C1Cartesian[][] G1(FundamentalGroupPathExponent2F1 pathExponent1, FundamentalGroupPathExponent2F1 pathExponent2)Generate the Monodromy Group Matrix G1 around the '1' Singularity- Parameters:
pathExponent1
- Path Monodromy Exponents of the Fundamental Group #1pathExponent2
- Path Monodromy Exponents of the Fundamental Group #2- Returns:
- The Monodromy Group Matrix G1 around the '1' Singularity
-