Package org.drip.specialfunction.group
Class SchwarzTriangleMap
java.lang.Object
org.drip.specialfunction.group.SchwarzTriangleMap
public class SchwarzTriangleMap
extends java.lang.Object
SchwarzTriangleMap contains the Ratio of the Linearly Independent Solution pair corresponding to a
given Singularity of the Hyper-geometric 2F1 Function. The References are:
- Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
- Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
- Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
- National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
- Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
- SchwarzTriangleMap Constructor
- Retrieve the Singularity
- Retrieve the Singularity Solution 0
- Retrieve the Singularity Solution 1
- Retrieve the Singularity Asymptote Order Term
- Retrieve the Connection Coefficient
- Indicate if the Triangle Map is Conformal
- Generate the s-Function corresponding to the Singularity Solution Pair
- Generate the Schwarz-Christoffel Triangle Vertex
Module | Computational Core Module |
Library | Function Analysis Library |
Project | Special Function Implementation and Analysis |
Package | Special Function Singularity Solution Group |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description SchwarzTriangleMap(double singularity, R1ToR1 singularitySolution0, R1ToR1 singularitySolution1, R1ToR1 singularityAsymptoteOrderTerm, double connectionCoefficient)
SchwarzTriangleMap Constructor -
Method Summary
Modifier and Type Method Description double
connectionCoefficient()
Retrieve the Connection Coefficientboolean
isConformal()
Indicate if the Triangle Map is ConformalSchwarzChristoffelVertex
schwarzChristoffelVertex()
Generate the Schwarz-Christoffel Triangle VertexR1ToR1
sFunction()
Generate the s-Function corresponding to the Singularity Solution Pairdouble
singularity()
Retrieve the SingularityR1ToR1
singularityAsymptoteOrderTerm()
Retrieve the Singularity Asymptote Order TermR1ToR1
singularitySolution0()
Retrieve the Singularity Solution 0R1ToR1
singularitySolution1()
Retrieve the Singularity Solution 1Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
SchwarzTriangleMap
public SchwarzTriangleMap(double singularity, R1ToR1 singularitySolution0, R1ToR1 singularitySolution1, R1ToR1 singularityAsymptoteOrderTerm, double connectionCoefficient) throws java.lang.ExceptionSchwarzTriangleMap Constructor- Parameters:
singularity
- The SingularitysingularitySolution0
- The Singularity Solution 0singularitySolution1
- The Singularity Solution 1singularityAsymptoteOrderTerm
- The Singularity Asymptote Order TermconnectionCoefficient
- The Connection Coefficient- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
singularity
public double singularity()Retrieve the Singularity- Returns:
- The Singularity
-
singularitySolution0
Retrieve the Singularity Solution 0- Returns:
- The Singularity Solution 0
-
singularitySolution1
Retrieve the Singularity Solution 1- Returns:
- The Singularity Solution 1
-
singularityAsymptoteOrderTerm
Retrieve the Singularity Asymptote Order Term- Returns:
- The Singularity Asymptote Order Term
-
connectionCoefficient
public double connectionCoefficient()Retrieve the Connection Coefficient- Returns:
- The Connection Coefficient
-
isConformal
public boolean isConformal()Indicate if the Triangle Map is Conformal- Returns:
- TRUE - The Triangle Map is Conformal
-
sFunction
Generate the s-Function corresponding to the Singularity Solution Pair- Returns:
- The s-Function corresponding to the Singularity Solution Pair
-
schwarzChristoffelVertex
Generate the Schwarz-Christoffel Triangle Vertex- Returns:
- The Schwarz-Christoffel Triangle Vertex
-