Package org.drip.specialfunction.group
Class SchwarzTriangleMap
java.lang.Object
org.drip.specialfunction.group.SchwarzTriangleMap
public class SchwarzTriangleMap
extends java.lang.Object
SchwarzTriangleMap contains the Ratio of the Linearly Independent Solution pair corresponding to a
given Singularity of the Hyper-geometric 2F1 Function. The References are:
- Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
- Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
- Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
- National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
- Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
- SchwarzTriangleMap Constructor
- Retrieve the Singularity
- Retrieve the Singularity Solution 0
- Retrieve the Singularity Solution 1
- Retrieve the Singularity Asymptote Order Term
- Retrieve the Connection Coefficient
- Indicate if the Triangle Map is Conformal
- Generate the s-Function corresponding to the Singularity Solution Pair
- Generate the Schwarz-Christoffel Triangle Vertex
| Module | Computational Core Module |
| Library | Function Analysis Library |
| Project | Special Function Implementation and Analysis |
| Package | Special Function Singularity Solution Group |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description SchwarzTriangleMap(double singularity, R1ToR1 singularitySolution0, R1ToR1 singularitySolution1, R1ToR1 singularityAsymptoteOrderTerm, double connectionCoefficient)SchwarzTriangleMap Constructor -
Method Summary
Modifier and Type Method Description doubleconnectionCoefficient()Retrieve the Connection CoefficientbooleanisConformal()Indicate if the Triangle Map is ConformalSchwarzChristoffelVertexschwarzChristoffelVertex()Generate the Schwarz-Christoffel Triangle VertexR1ToR1sFunction()Generate the s-Function corresponding to the Singularity Solution Pairdoublesingularity()Retrieve the SingularityR1ToR1singularityAsymptoteOrderTerm()Retrieve the Singularity Asymptote Order TermR1ToR1singularitySolution0()Retrieve the Singularity Solution 0R1ToR1singularitySolution1()Retrieve the Singularity Solution 1Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
SchwarzTriangleMap
public SchwarzTriangleMap(double singularity, R1ToR1 singularitySolution0, R1ToR1 singularitySolution1, R1ToR1 singularityAsymptoteOrderTerm, double connectionCoefficient) throws java.lang.ExceptionSchwarzTriangleMap Constructor- Parameters:
singularity- The SingularitysingularitySolution0- The Singularity Solution 0singularitySolution1- The Singularity Solution 1singularityAsymptoteOrderTerm- The Singularity Asymptote Order TermconnectionCoefficient- The Connection Coefficient- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
-
Method Details
-
singularity
public double singularity()Retrieve the Singularity- Returns:
- The Singularity
-
singularitySolution0
Retrieve the Singularity Solution 0- Returns:
- The Singularity Solution 0
-
singularitySolution1
Retrieve the Singularity Solution 1- Returns:
- The Singularity Solution 1
-
singularityAsymptoteOrderTerm
Retrieve the Singularity Asymptote Order Term- Returns:
- The Singularity Asymptote Order Term
-
connectionCoefficient
public double connectionCoefficient()Retrieve the Connection Coefficient- Returns:
- The Connection Coefficient
-
isConformal
public boolean isConformal()Indicate if the Triangle Map is Conformal- Returns:
- TRUE - The Triangle Map is Conformal
-
sFunction
Generate the s-Function corresponding to the Singularity Solution Pair- Returns:
- The s-Function corresponding to the Singularity Solution Pair
-
schwarzChristoffelVertex
Generate the Schwarz-Christoffel Triangle Vertex- Returns:
- The Schwarz-Christoffel Triangle Vertex
-