Class PochhammerSeries

java.lang.Object
org.drip.specialfunction.hypergeometric.PochhammerSeries

public class PochhammerSeries
extends java.lang.Object
PochhammerSeries refers to the Estimation of the Hyper-geometric Function using the Pochhammer Series Expansion. The References are:

  • Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
  • Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
  • Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
  • National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
  • Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
It provides the following functionality:
  • Construct the R1 To R1 Pochhammer Cumulative Series

Module Computational Core Module
Library Function Analysis Library
Project Special Function Implementation and Analysis
Package Hyper-geometric Function Estimation Schemes
Author:
Lakshmi Krishnamurthy
  • Constructor Summary

    Constructors
    Constructor Description
    PochhammerSeries()  
  • Method Summary

    Modifier and Type Method Description
    static R1ToR1Series Create​(HypergeometricParameters hypergeometricParameters, int termCount)
    Construct the R1 To R1 Pochhammer Cumulative Series

    Methods inherited from class java.lang.Object

    equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • PochhammerSeries

      public PochhammerSeries()
  • Method Details

    • Create

      public static final R1ToR1Series Create​(HypergeometricParameters hypergeometricParameters, int termCount)
      Construct the R1 To R1 Pochhammer Cumulative Series
      Parameters:
      hypergeometricParameters - The Hyper-geometric Parameters
      termCount - Count of the Number of Terms
      Returns:
      The R1 To R1 Pochhammer Cumulative Series