Class PochhammerSeries
java.lang.Object
org.drip.specialfunction.hypergeometric.PochhammerSeries
public class PochhammerSeries
extends java.lang.Object
PochhammerSeries refers to the Estimation of the Hyper-geometric Function using the Pochhammer
Series Expansion. The References are:
- Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series SIAM Journal on Mathematical Analysis 13 (2) 295-308
- Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation Journal of Symbolic Computation 20 (4) 399-417
- Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the Sum of a (_2^3)F(a,b;c;z) Journal of Computational and Applied Mathematics 72 293-300
- National Institute of Standards and Technology (2019): Hyper-geometric Function https://dlmf.nist.gov/15
- Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
- Construct the R1 To R1 Pochhammer Cumulative Series
Module | Computational Core Module |
Library | Function Analysis Library |
Project | Special Function Implementation and Analysis |
Package | Hyper-geometric Function Estimation Schemes |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description PochhammerSeries()
-
Method Summary
Modifier and Type Method Description static R1ToR1Series
Create(HypergeometricParameters hypergeometricParameters, int termCount)
Construct the R1 To R1 Pochhammer Cumulative SeriesMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
PochhammerSeries
public PochhammerSeries()
-
-
Method Details
-
Create
public static final R1ToR1Series Create(HypergeometricParameters hypergeometricParameters, int termCount)Construct the R1 To R1 Pochhammer Cumulative Series- Parameters:
hypergeometricParameters
- The Hyper-geometric ParameterstermCount
- Count of the Number of Terms- Returns:
- The R1 To R1 Pochhammer Cumulative Series
-