Class InfiniteSumSeries
java.lang.Object
org.drip.specialfunction.loggamma.InfiniteSumSeries
public class InfiniteSumSeries
extends java.lang.Object
InfiniteSumSeries implements Infinite Sum Series for Log Gamma Estimation. The References are:
- Blagouchine, I. V. (2014): Re-discovery of Malmsten's Integrals, their Evaluation by Contour Integration Methods, and some Related Results Ramanujan Journal 35 (1) 21-110
- Borwein, J. M., and R. M. Corless (2017): Gamma Function and the Factorial in the Monthly https://arxiv.org/abs/1703.05349 arXiv
- Davis, P. J. (1959): Leonhard Euler's Integral: A Historical Profile of the Gamma Function American Mathematical Monthly 66 (10) 849-869
- Whitaker, E. T., and G. N. Watson (1996): A Course on Modern Analysis Cambridge University Press New York
- Wikipedia (2019): Gamma Function https://en.wikipedia.org/wiki/Gamma_function
- Construct the R1 To R1 Infinite Euler Sum Series
- Construct the R1 To R1 Infinite Weierstrass Sum Series
- Construct the R1 To R1 Malmsten-Blagouchine Fourier Series
- Construct the R1 To R1 Blagouchine (2015) Series
Module | Computational Core Module |
Library | Function Analysis Library |
Project | Special Function Implementation and Analysis |
Package | Analytic/Series/Integral Log Gamma Estimators |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description InfiniteSumSeries()
-
Method Summary
Modifier and Type Method Description static R1ToR1Series
Blagouchine2015(int termCount)
Construct the R1 To R1 Blagouchine (2015) Seriesstatic R1ToR1Series
Euler(int termCount)
Construct the R1 To R1 Infinite Euler Sum Seriesstatic R1ToR1Series
Fourier(int termCount)
Construct the R1 To R1 Malmsten-Blagouchine Fourier Seriesstatic R1ToR1Series
Weierstrass(int termCount)
Construct the R1 To R1 Infinite Weierstrass Sum SeriesMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
InfiniteSumSeries
public InfiniteSumSeries()
-
-
Method Details
-
Euler
Construct the R1 To R1 Infinite Euler Sum Series- Parameters:
termCount
- Count of the Number of Terms- Returns:
- The R1 To R1 Infinite Euler Sum Series
-
Weierstrass
Construct the R1 To R1 Infinite Weierstrass Sum Series- Parameters:
termCount
- Count of the Number of Terms- Returns:
- The R1 To R1 Infinite Weierstrass Sum Series
-
Fourier
Construct the R1 To R1 Malmsten-Blagouchine Fourier Series- Parameters:
termCount
- Count of the Number of Terms- Returns:
- The R1 To R1 Malmsten-Blagouchine Fourier Series
-
Blagouchine2015
Construct the R1 To R1 Blagouchine (2015) Series- Parameters:
termCount
- Count of the Number of Terms- Returns:
- The R1 To R1 Blagouchine (2015) Series
-