Class GammaInequalityLemma
java.lang.Object
org.drip.specialfunction.property.GammaInequalityLemma
public class GammaInequalityLemma
extends java.lang.Object
GammaInequalityLemma contains the Verifiable Inequality Lemmas of the Gamma Function. The
References are:
- Blagouchine, I. V. (2014): Re-discovery of Malmsten's Integrals, their Evaluation by Contour Integration Methods, and some Related Results Ramanujan Journal 35 (1) 21-110
- Borwein, J. M., and R. M. Corless (2017): Gamma Function and the Factorial in the Monthly https://arxiv.org/abs/1703.05349 arXiv
- Davis, P. J. (1959): Leonhard Euler's Integral: A Historical Profile of the Gamma Function American Mathematical Monthly 66 (10) 849-869
- Whitaker, E. T., and G. N. Watson (1996): A Course on Modern Analysis Cambridge University Press New York
- Wikipedia (2019): Gamma Function https://en.wikipedia.org/wiki/Gamma_function
- Construct the Asymptotic Upper Approximate
- Generate the Exponentially Convex Inequality Verifier
- Generate the Spaced Point Convex Inequality Verifier
- Generate the Logarithmically Convex Inequality Verifier
- Generate the Gautschi Left Inequality Verifier
- Generate the Gautschi Right Inequality Verifier
- Generate the Jensen Multi-Point Interpolant Convexity Verification
Module | Computational Core Module |
Library | Function Analysis Library |
Project | Special Function Implementation and Analysis |
Package | Special Function Property Lemma Verifiers |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description GammaInequalityLemma()
-
Method Summary
Modifier and Type Method Description static R1ToR1Property
AsymptoticUpperApproximate(double alpha)
Construct the Asymptotic Upper Approximatestatic R1ToR1Property
ExponentiallyConvex(double z1, double z2)
Generate the Exponentially Convex Inequality Verifierstatic R1ToR1Property
GautschiLeft(double s)
Generate the Gautschi Left Inequality Verifierstatic R1ToR1Property
GautschiRight(double s)
Generate the Gautschi Right Inequality Verifierstatic R1PropertyVerification
JensenMultiPointInterpolant(Array2D multiPoint2D)
Generate the Jensen Multi-Point Interpolant Convexity Verificationstatic R1ToR1Property
LogarithmicConvex()
Generate the Logarithmically Convex Inequality Verifierstatic R1ToR1Property
SpacedPointConvex(double y)
Generate the Spaced Point Convex Inequality VerifierMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
GammaInequalityLemma
public GammaInequalityLemma()
-
-
Method Details
-
AsymptoticUpperApproximate
Construct the Asymptotic Upper Approximate- Parameters:
alpha
- Alpha- Returns:
- The Asymptotic Upper Approximate
-
ExponentiallyConvex
Generate the Exponentially Convex Inequality Verifier- Parameters:
z1
- z1z2
- z2- Returns:
- The Exponentially Convex Inequality Verifier
-
SpacedPointConvex
Generate the Spaced Point Convex Inequality Verifier- Parameters:
y
- y- Returns:
- The Spaced Point Convex Inequality Verifier
-
LogarithmicConvex
Generate the Logarithmically Convex Inequality Verifier- Returns:
- The Logarithmically Convex Inequality Verifier
-
GautschiLeft
Generate the Gautschi Left Inequality Verifier- Parameters:
s
- s- Returns:
- The Gautschi Left Inequality Verifier
-
GautschiRight
Generate the Gautschi Right Inequality Verifier- Parameters:
s
- s- Returns:
- The Gautschi Right Inequality Verifier
-
JensenMultiPointInterpolant
Generate the Jensen Multi-Point Interpolant Convexity Verification- Parameters:
multiPoint2D
- Multi-Point 2D- Returns:
- Jensen Multi-Point Interpolant Convexity Verification
-