Class RelaxationTimeDistributionSeries
java.lang.Object
org.drip.specialfunction.scaledexponential.RelaxationTimeDistributionSeries
public class RelaxationTimeDistributionSeries
extends java.lang.Object
RelaxationTimeDistributionSeries implements the Series Expansion of the Relaxation Time
Distribution Function. The References are:
- Gradshteyn, I. S., I. M. Ryzhik, Y. V. Geronimus, M. Y. Tseytlin, and A. Jeffrey (2015): Tables of Integrals, Series, and Products Academic Press
- Hilfer, J. (2002): H-function Representations for Stretched Exponential Relaxation and non-Debye Susceptibilities in Glassy Systems Physical Review E 65 (6) 061510
- Wikipedia (2019): Stretched Exponential Function https://en.wikipedia.org/wiki/Stretched_exponential_function
- Wuttke, J. (2012): Laplace-Fourier Transform of the Stretched Exponential Function: Analytic Error-Bounds, Double Exponential Transform, and Open Source Implementation libkw Algorithm 5 (4) 604-628
- Zorn, R. (2002): Logarithmic Moments of Relaxation Time Distributions Journal of Chemical Physics 116 (8) 3204-3209
- Construct the R1 To R1 Bessel First Kind Frobenius Summation Series
Module | Computational Core Module |
Library | Function Analysis Library |
Project | Special Function Implementation and Analysis |
Package | Scaled Exponential Function Implementation Distribution |
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description RelaxationTimeDistributionSeries()
-
Method Summary
Modifier and Type Method Description static R1ToR1Series
Summation(double beta, R1ToR1 gammaEstimator, int termCount)
Construct the R1 To R1 Bessel First Kind Frobenius Summation SeriesMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
RelaxationTimeDistributionSeries
public RelaxationTimeDistributionSeries()
-
-
Method Details
-
Summation
Construct the R1 To R1 Bessel First Kind Frobenius Summation Series- Parameters:
beta
- The betagammaEstimator
- The Gamma EstimatortermCount
- Count of the Number of Terms- Returns:
- The R1 To R1 Bessel First Kind Frobenius Summation Series
-