Class BurgardKjaerOperator

java.lang.Object
org.drip.xva.pde.BurgardKjaerOperator

public class BurgardKjaerOperator
extends java.lang.Object
BurgardKjaerOperator sets up the Parabolic Differential Equation PDE based on the Ito Evolution Differential for the Reference Underlier Asset, as laid out in Burgard and Kjaer (2014). The References are:

  • Burgard, C., and M. Kjaer (2014): PDE Representations of Derivatives with Bilateral Counter-party Risk and Funding Costs Journal of Credit Risk 7 (3) 1-19
  • Cesari, G., J. Aquilina, N. Charpillon, X. Filipovic, G. Lee, and L. Manda (2009): Modeling, Pricing, and Hedging Counter-party Credit Exposure - A Technical Guide Springer Finance New York
  • Gregory, J. (2009): Being Two-faced over Counter-party Credit Risk Risk 20 (2) 86-90
  • Li, B., and Y. Tang (2007): Quantitative Analysis, Derivatives Modeling, and Trading Strategies in the Presence of Counter-party Credit Risk for the Fixed Income Market World Scientific Publishing Singapore
  • Piterbarg, V. (2010): Funding Beyond Discounting: Collateral Agreements and Derivatives Pricing Risk 21 (2) 97-102




Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • BurgardKjaerOperator

      public BurgardKjaerOperator​(PrimarySecurityDynamicsContainer tradeablesContainer, PDEEvolutionControl pdeEvolutionControl) throws java.lang.Exception
      BurgardKjaerOperator Constructor
      Parameters:
      tradeablesContainer - The Universe of Tradeable Assets
      pdeEvolutionControl - The XVA Control Settings
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • tradeablesContainer

      public PrimarySecurityDynamicsContainer tradeablesContainer()
      Retrieve the Universe of Trade-able Assets
      Returns:
      The Universe of Trade-able Assets
    • pdeEvolutionControl

      public PDEEvolutionControl pdeEvolutionControl()
      Retrieve the PDE Evolution Control Settings
      Returns:
      The PDE Evolution Control Settings
    • edgeRun

      public BurgardKjaerEdgeRun edgeRun​(MarketEdge marketEdge, EvolutionTrajectoryVertex initialTrajectoryVertex, double collateral)
      Generate the Derivative Value Time Increment using the Burgard Kjaer Scheme
      Parameters:
      marketEdge - The Market Edge
      initialTrajectoryVertex - The Evolution Trajectory Vertex
      collateral - The Off-setting Collateral
      Returns:
      The Time Increment using the Burgard Kjaer Scheme
    • edgeRunAttribution

      public BurgardKjaerEdgeAttribution edgeRunAttribution​(MarketEdge marketEdge, EvolutionTrajectoryVertex initialTrajectoryVertex, double collateral)
      Generate the Time Increment Run Attribution using the Burgard Kjaer Scheme
      Parameters:
      marketEdge - The Market Edge
      initialTrajectoryVertex - The Starting Evolution Trajectory Vertex
      collateral - The Off-setting Collateral
      Returns:
      The Time Increment Run Attribution using the Burgard Kjaer Scheme