RdWienerDriver.java

  1. package org.drip.dynamics.ito;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>RdWienerDriver</i> exposes the R<sup>d</sup> Wiener Background Emission Function. The References are:
  76.  *  
  77.  *  <br><br>
  78.  *  <ul>
  79.  *      <li>
  80.  *          Doob, J. L. (1942): The Brownian Movement and Stochastic Equations <i>Annals of Mathematics</i>
  81.  *              <b>43 (2)</b> 351-369
  82.  *      </li>
  83.  *      <li>
  84.  *          Gardiner, C. W. (2009): <i>Stochastic Methods: A Handbook for the Natural and Social Sciences
  85.  *              4<sup>th</sup> Edition</i> <b>Springer-Verlag</b>
  86.  *      </li>
  87.  *      <li>
  88.  *          Kadanoff, L. P. (2000): <i>Statistical Physics: Statics, Dynamics, and Re-normalization</i>
  89.  *              <b>World Scientific</b>
  90.  *      </li>
  91.  *      <li>
  92.  *          Karatzas, I., and S. E. Shreve (1991): <i>Brownian Motion and Stochastic Calculus 2<sup>nd</sup>
  93.  *              Edition</i> <b>Springer-Verlag</b>
  94.  *      </li>
  95.  *      <li>
  96.  *          Risken, H., and F. Till (1996): <i>The Fokker-Planck Equation – Methods of Solution and
  97.  *              Applications</i> <b>Springer</b>
  98.  *      </li>
  99.  *  </ul>
  100.  *
  101.  *  <br><br>
  102.  *  <ul>
  103.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
  104.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FixedIncomeAnalyticsLibrary.md">Fixed Income Analytics</a></li>
  105.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/README.md">HJM, Hull White, LMM, and SABR Dynamic Evolution Models</a></li>
  106.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/ito/README.md">Ito Stochastic Process Dynamics Foundation</a></li>
  107.  *  </ul>
  108.  *
  109.  * @author Lakshmi Krishnamurthy
  110.  */

  111. public class RdWienerDriver
  112.     extends org.drip.dynamics.ito.RdStochasticDriver
  113. {
  114.     private double _timeWidthSQRT = java.lang.Double.NaN;
  115.     private org.drip.measure.gaussian.Covariance _correlation = null;

  116.     /**
  117.      * RdWienerDriver Constructor
  118.      *
  119.      * @param timeWidth The Wiener Time Width
  120.      * @param correlation The Correlation
  121.      *
  122.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  123.      */

  124.     public RdWienerDriver (
  125.         final double timeWidth,
  126.         final org.drip.measure.gaussian.Covariance correlation)
  127.         throws java.lang.Exception
  128.     {
  129.         if (!org.drip.numerical.common.NumberUtil.IsValid (
  130.                 timeWidth
  131.             ) || 0. >= timeWidth ||
  132.             null == (_correlation = correlation)
  133.         )
  134.         {
  135.             throw new java.lang.Exception (
  136.                 "RdWienerDriver Constructor => Invalid Inputs"
  137.             );
  138.         }

  139.         _timeWidthSQRT = java.lang.Math.sqrt (
  140.             timeWidth
  141.         );
  142.     }

  143.     /**
  144.      * Retrieve the Square Root of the Time Width
  145.      *
  146.      * @return Square Root of the Time Width
  147.      */

  148.     public double timeWidthSQRT()
  149.     {
  150.         return _timeWidthSQRT;
  151.     }

  152.     /**
  153.      * Retrieve the Correlation
  154.      *
  155.      * @return The Correlation
  156.      */

  157.     public org.drip.measure.gaussian.Covariance correlation()
  158.     {
  159.         return _correlation;
  160.     }

  161.     @Override public double[] emitSingle()
  162.     {
  163.         try
  164.         {
  165.             double[] singleCorrelatedSuite = new org.drip.measure.discrete.CorrelatedPathVertexDimension (
  166.                 new org.drip.measure.crng.RandomNumberGenerator(),
  167.                 _correlation.correlationMatrix(),
  168.                 1,
  169.                 1,
  170.                 false,
  171.                 null
  172.             ).straightVertexRealization();

  173.             if (null == singleCorrelatedSuite)
  174.             {
  175.                 return null;
  176.             }

  177.             int dimension = _correlation.numVariate();

  178.             for (int dimensionIndex = 0;
  179.                 dimensionIndex < dimension;
  180.                 ++dimensionIndex)
  181.             {
  182.                 singleCorrelatedSuite[dimensionIndex] =
  183.                     _timeWidthSQRT * singleCorrelatedSuite[dimensionIndex];
  184.             }

  185.             return singleCorrelatedSuite;
  186.         }
  187.         catch (java.lang.Exception e)
  188.         {
  189.             e.printStackTrace();
  190.         }

  191.         return null;
  192.     }
  193. }