R1FokkerPlanck.java

  1. package org.drip.dynamics.kolmogorov;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>R1FokkerPlanck</i> exposes the R<sup>1</sup> Fokker-Planck Probability Density Function Evolution
  76.  *  Equation. The References are:
  77.  *  
  78.  *  <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Bogoliubov, N. N., and D. P. Sankevich (1994): N. N. Bogoliubov and Statistical Mechanics
  82.  *              <i>Russian Mathematical Surveys</i> <b>49 (5)</b> 19-49
  83.  *      </li>
  84.  *      <li>
  85.  *          Holubec, V., K. Kroy, and S. Steffenoni (2019): Physically Consistent Numerical Solver for
  86.  *              Time-dependent Fokker-Planck Equations <i>Physical Review E</i> <b>99 (4)</b> 032117
  87.  *      </li>
  88.  *      <li>
  89.  *          Kadanoff, L. P. (2000): <i>Statistical Physics: Statics, Dynamics, and Re-normalization</i>
  90.  *              <b>World Scientific</b>
  91.  *      </li>
  92.  *      <li>
  93.  *          Ottinger, H. C. (1996): <i>Stochastic Processes in Polymeric Fluids</i> <b>Springer-Verlag</b>
  94.  *              Berlin-Heidelberg
  95.  *      </li>
  96.  *      <li>
  97.  *          Wikipedia (2019): Fokker-Planck Equation
  98.  *              https://en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
  99.  *      </li>
  100.  *  </ul>
  101.  *
  102.  *  <br><br>
  103.  *  <ul>
  104.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
  105.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FixedIncomeAnalyticsLibrary.md">Fixed Income Analytics</a></li>
  106.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/README.md">HJM, Hull White, LMM, and SABR Dynamic Evolution Models</a></li>
  107.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/kolmogorov/README.md">Fokker Planck Kolmogorov Forward/Backward</a></li>
  108.  *  </ul>
  109.  *
  110.  * @author Lakshmi Krishnamurthy
  111.  */

  112. public class R1FokkerPlanck
  113. {
  114.     private org.drip.dynamics.ito.R1ToR1Drift _driftFunction = null;
  115.     private org.drip.dynamics.ito.R1ToR1Volatility _volatilityFunction = null;

  116.     /**
  117.      * R1FokkerPlanck Constructor
  118.      *
  119.      * @param driftFunction The Drift Function
  120.      * @param volatilityFunction The Volatility Function
  121.      *
  122.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  123.      */

  124.     public R1FokkerPlanck (
  125.         final org.drip.dynamics.ito.R1ToR1Drift driftFunction,
  126.         final org.drip.dynamics.ito.R1ToR1Volatility volatilityFunction)
  127.         throws java.lang.Exception
  128.     {
  129.         if (null == (_driftFunction = driftFunction) ||
  130.             null == (_volatilityFunction = volatilityFunction))
  131.         {
  132.             throw new java.lang.Exception (
  133.                 "R1FokkerPlanck Constructor => Invalid Inputs"
  134.             );
  135.         }
  136.     }

  137.     /**
  138.      * Retrieve the Drift Function
  139.      *
  140.      * @return The Drift Function
  141.      */

  142.     public org.drip.dynamics.ito.R1ToR1Drift driftFunction()
  143.     {
  144.         return _driftFunction;
  145.     }

  146.     /**
  147.      * Retrieve the Volatility Function
  148.      *
  149.      * @return The Volatility Function
  150.      */

  151.     public org.drip.dynamics.ito.R1ToR1Volatility volatilityFunction()
  152.     {
  153.         return _volatilityFunction;
  154.     }

  155.     /**
  156.      * Compute the Next Incremental Time Derivative of the PDF
  157.      *
  158.      * @param probabilityDensityFunction The PDF
  159.      * @param timeR1Vertex The R<sup>1</sup> Time Vertex
  160.      *
  161.      * @return Next Incremental Time Derivative of the PDF
  162.      *
  163.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  164.      */

  165.     public double pdfDot (
  166.         final org.drip.dynamics.process.R1ProbabilityDensityFunction probabilityDensityFunction,
  167.         final org.drip.dynamics.ito.TimeR1Vertex timeR1Vertex)
  168.         throws java.lang.Exception
  169.     {
  170.         if (null == probabilityDensityFunction ||
  171.             null == timeR1Vertex)
  172.         {
  173.             throw new java.lang.Exception (
  174.                 "R1FokkerPlanck::pdfDot => Invalid Inputs"
  175.             );
  176.         }

  177.         final double time = timeR1Vertex.t();

  178.         return new org.drip.function.definition.R1ToR1 (
  179.             null
  180.         )
  181.         {
  182.             @Override public double evaluate (
  183.                 final double x)
  184.                 throws java.lang.Exception
  185.             {
  186.                 org.drip.dynamics.ito.TimeR1Vertex localTimeR1Vertex =
  187.                     new org.drip.dynamics.ito.TimeR1Vertex (
  188.                         time,
  189.                         x
  190.                     );

  191.                 return _driftFunction.drift (
  192.                     localTimeR1Vertex
  193.                 ) * probabilityDensityFunction.density (
  194.                     localTimeR1Vertex
  195.                 );
  196.             }
  197.         }.derivative (
  198.             timeR1Vertex.x(),
  199.             1
  200.         ) +  new org.drip.function.definition.R1ToR1 (
  201.             null
  202.         )
  203.         {
  204.             @Override public double evaluate (
  205.                 final double x)
  206.                 throws java.lang.Exception
  207.             {
  208.                 org.drip.dynamics.ito.TimeR1Vertex localTimeR1Vertex =
  209.                     new org.drip.dynamics.ito.TimeR1Vertex (
  210.                         time,
  211.                         x
  212.                     );

  213.                 double volatility = _volatilityFunction.volatility (
  214.                     localTimeR1Vertex
  215.                 );

  216.                 return 0.5 * volatility * volatility * probabilityDensityFunction.density (
  217.                     localTimeR1Vertex
  218.                 );
  219.             }
  220.         }.derivative (
  221.             timeR1Vertex.x(),
  222.             2
  223.         );
  224.     }

  225.     /**
  226.      * Compute the Temporal Probability Distribution Function, if any
  227.      *
  228.      * @param intialProbabilityDensityFunction The Initial Probability Density Function
  229.      *
  230.      * @return The Temporal Probability Distribution Function
  231.      */

  232.     public org.drip.dynamics.process.R1ProbabilityDensityFunction temporalPDF (
  233.         final org.drip.function.definition.R1ToR1 intialProbabilityDensityFunction)
  234.     {
  235.         return null;
  236.     }

  237.     /**
  238.      * Compute the Steady-State Probability Distribution Function, if any
  239.      *
  240.      * @return The Steady-State Probability Distribution Function
  241.      */

  242.     public org.drip.function.definition.R1ToR1 steadyStatePDF()
  243.     {
  244.         return null;
  245.     }

  246.     /**
  247.      * Compute the Temporal Probability Distribution Function given the Delta 0 Starting PDF
  248.      *
  249.      * @param x0 The X Anchor for the Delta Function
  250.      *
  251.      * @return The Temporal Probability Distribution Function given the Delta 0 Starting PDF
  252.      */

  253.     public org.drip.dynamics.process.R1ProbabilityDensityFunction deltaStartTemporalPDF (
  254.         final double x0)
  255.     {
  256.         return null;
  257.     }
  258. }