CKLSParameters.java

  1. package org.drip.dynamics.meanreverting;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>CKLSParameters</i> contains the Parameters for the R<sup>1</sup> Chan-Karolyi-Longstaff-Sanders 1992
  76.  *  Stochastic Evolver. The References are:
  77.  *  
  78.  *  <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Doob, J. L. (1942): The Brownian Movement and Stochastic Equations <i>Annals of Mathematics</i>
  82.  *              <b>43 (2)</b> 351-369
  83.  *      </li>
  84.  *      <li>
  85.  *          Gardiner, C. W. (2009): <i>Stochastic Methods: A Handbook for the Natural and Social Sciences
  86.  *              4<sup>th</sup> Edition</i> <b>Springer-Verlag</b>
  87.  *      </li>
  88.  *      <li>
  89.  *          Kadanoff, L. P. (2000): <i>Statistical Physics: Statics, Dynamics, and Re-normalization</i>
  90.  *              <b>World Scientific</b>
  91.  *      </li>
  92.  *      <li>
  93.  *          Karatzas, I., and S. E. Shreve (1991): <i>Brownian Motion and Stochastic Calculus 2<sup>nd</sup>
  94.  *              Edition</i> <b>Springer-Verlag</b>
  95.  *      </li>
  96.  *      <li>
  97.  *          Risken, H., and F. Till (1996): <i>The Fokker-Planck Equation – Methods of Solution and
  98.  *              Applications</i> <b>Springer</b>
  99.  *      </li>
  100.  *  </ul>
  101.  *
  102.  *  <br><br>
  103.  *  <ul>
  104.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
  105.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FixedIncomeAnalyticsLibrary.md">Fixed Income Analytics</a></li>
  106.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/README.md">HJM, Hull White, LMM, and SABR Dynamic Evolution Models</a></li>
  107.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/meanreverting/README.md">Mean Reverting Stochastic Process Dynamics</a></li>
  108.  *  </ul>
  109.  *
  110.  * @author Lakshmi Krishnamurthy
  111.  */

  112. public class CKLSParameters
  113. {
  114.     private double _meanReversionLevel = java.lang.Double.NaN;
  115.     private double _meanReversionSpeed = java.lang.Double.NaN;
  116.     private double _volatilityExponent = java.lang.Double.NaN;
  117.     private double _volatilityCoefficient = java.lang.Double.NaN;

  118.     /**
  119.      * Construct the Vasicek Instance of the CKLS Parameters
  120.      *
  121.      * @param meanReversionSpeed The Mean Reversion Speed
  122.      * @param meanReversionLevel The Mean Reversion Level
  123.      * @param volatility The Volatility
  124.      *
  125.      * @return The Vasicek Instance of the CKLS Parameters
  126.      */

  127.     public static final CKLSParameters Vasicek (
  128.         final double meanReversionSpeed,
  129.         final double meanReversionLevel,
  130.         final double volatility)
  131.     {
  132.         try
  133.         {
  134.             return new CKLSParameters (
  135.                 meanReversionSpeed,
  136.                 meanReversionLevel,
  137.                 volatility,
  138.                 0.
  139.             );
  140.         }
  141.         catch (java.lang.Exception e)
  142.         {
  143.             e.printStackTrace();
  144.         }

  145.         return null;
  146.     }

  147.     /**
  148.      * Construct the Ornstein-Uhlenbeck Instance of the CKLS Parameters
  149.      *
  150.      * @param meanReversionSpeed The Mean Reversion Speed
  151.      * @param volatility The Volatility
  152.      *
  153.      * @return The Ornstein-Uhlenbeck Instance of the CKLS Parameters
  154.      */

  155.     public static final CKLSParameters OrnsteinUhlenbeck (
  156.         final double meanReversionSpeed,
  157.         final double volatility)
  158.     {
  159.         try
  160.         {
  161.             return new CKLSParameters (
  162.                 meanReversionSpeed,
  163.                 0.,
  164.                 volatility,
  165.                 0.
  166.             );
  167.         }
  168.         catch (java.lang.Exception e)
  169.         {
  170.             e.printStackTrace();
  171.         }

  172.         return null;
  173.     }

  174.     /**
  175.      * Construct the Cox-Ingersoll-Ross Instance of the CKLS Parameters
  176.      *
  177.      * @param meanReversionSpeed The Mean Reversion Speed
  178.      * @param meanReversionLevel The Mean Reversion Level
  179.      * @param volatilityCoefficient The Volatility Coefficient
  180.      *
  181.      * @return The Cox-Ingersoll-Ross Instance of the CKLS Parameters
  182.      */

  183.     public static final CKLSParameters CoxIngersollRoss (
  184.         final double meanReversionSpeed,
  185.         final double meanReversionLevel,
  186.         final double volatilityCoefficient)
  187.     {
  188.         try
  189.         {
  190.             return new CKLSParameters (
  191.                 meanReversionSpeed,
  192.                 meanReversionLevel,
  193.                 volatilityCoefficient,
  194.                 0.5
  195.             );
  196.         }
  197.         catch (java.lang.Exception e)
  198.         {
  199.             e.printStackTrace();
  200.         }

  201.         return null;
  202.     }

  203.     /**
  204.      * CKLSParameters Constructor
  205.      *
  206.      * @param meanReversionSpeed The Mean Reversion Speed
  207.      * @param meanReversionLevel The Mean Reversion Level
  208.      * @param volatilityCoefficient The Volatility Coefficient
  209.      * @param volatilityExponent The Volatility Exponent
  210.      *
  211.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  212.      */

  213.     public CKLSParameters (
  214.         final double meanReversionSpeed,
  215.         final double meanReversionLevel,
  216.         final double volatilityCoefficient,
  217.         final double volatilityExponent)
  218.         throws java.lang.Exception
  219.     {
  220.         if (!org.drip.numerical.common.NumberUtil.IsValid (
  221.                 _meanReversionSpeed = meanReversionSpeed
  222.             ) || 0. > _meanReversionSpeed || !org.drip.numerical.common.NumberUtil.IsValid (
  223.                 _meanReversionLevel = meanReversionLevel
  224.             ) || 0. > _meanReversionLevel || !org.drip.numerical.common.NumberUtil.IsValid (
  225.                 _volatilityCoefficient = volatilityCoefficient
  226.             ) || 0. > _volatilityCoefficient || !org.drip.numerical.common.NumberUtil.IsValid (
  227.                 _volatilityExponent = volatilityExponent
  228.             ) || 0. > _volatilityExponent
  229.         )
  230.         {
  231.             throw new java.lang.Exception (
  232.                 "CKLSParameters Constructor => Invalid Inputs"
  233.             );
  234.         }
  235.     }

  236.     /**
  237.      * Retrieve the Mean Reversion Speed
  238.      *
  239.      * @return The Mean Reversion Speed
  240.      */

  241.     public double meanReversionSpeed()
  242.     {
  243.         return _meanReversionSpeed;
  244.     }

  245.     /**
  246.      * Retrieve the Mean Reversion Level
  247.      *
  248.      * @return The Mean Reversion Level
  249.      */

  250.     public double meanReversionLevel()
  251.     {
  252.         return _meanReversionLevel;
  253.     }

  254.     /**
  255.      * Retrieve the Volatility Coefficient
  256.      *
  257.      * @return The Volatility Coefficient
  258.      */

  259.     public double volatilityCoefficient()
  260.     {
  261.         return _volatilityCoefficient;
  262.     }

  263.     /**
  264.      * Retrieve the CKLS Volatility Exponent
  265.      *
  266.      * @return The CKLS Volatility Exponent
  267.      */

  268.     public double volatilityExponent()
  269.     {
  270.         return _volatilityExponent;
  271.     }
  272. }