R1BrownianStochasticEvolver.java

  1. package org.drip.dynamics.meanreverting;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>R1BrownianStochasticEvolver</i> implements the R<sup>1</sup> Brownian Stochastic Evolver. The
  76.  *  References are:
  77.  *  
  78.  *  <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Doob, J. L. (1942): The Brownian Movement and Stochastic Equations <i>Annals of Mathematics</i>
  82.  *              <b>43 (2)</b> 351-369
  83.  *      </li>
  84.  *      <li>
  85.  *          Gardiner, C. W. (2009): <i>Stochastic Methods: A Handbook for the Natural and Social Sciences
  86.  *              4<sup>th</sup> Edition</i> <b>Springer-Verlag</b>
  87.  *      </li>
  88.  *      <li>
  89.  *          Kadanoff, L. P. (2000): <i>Statistical Physics: Statics, Dynamics, and Re-normalization</i>
  90.  *              <b>World Scientific</b>
  91.  *      </li>
  92.  *      <li>
  93.  *          Karatzas, I., and S. E. Shreve (1991): <i>Brownian Motion and Stochastic Calculus 2<sup>nd</sup>
  94.  *              Edition</i> <b>Springer-Verlag</b>
  95.  *      </li>
  96.  *      <li>
  97.  *          Risken, H., and F. Till (1996): <i>The Fokker-Planck Equation – Methods of Solution and
  98.  *              Applications</i> <b>Springer</b>
  99.  *      </li>
  100.  *  </ul>
  101.  *
  102.  *  <br><br>
  103.  *  <ul>
  104.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
  105.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FixedIncomeAnalyticsLibrary.md">Fixed Income Analytics</a></li>
  106.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/README.md">HJM, Hull White, LMM, and SABR Dynamic Evolution Models</a></li>
  107.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/meanreverting/README.md">Mean Reverting Stochastic Process Dynamics</a></li>
  108.  *  </ul>
  109.  *
  110.  * @author Lakshmi Krishnamurthy
  111.  */

  112. public class R1BrownianStochasticEvolver
  113.     extends org.drip.dynamics.process.R1StochasticEvolver
  114. {

  115.     /**
  116.      * Construct a Weiner Instance of R1BrownianStochasticEvolver Process
  117.      *
  118.      * @param timeWidth Wiener Time Width
  119.      *
  120.      * @return Weiner Instance of R1BrownianStochasticEvolver Process
  121.      */

  122.     public static R1BrownianStochasticEvolver Wiener (
  123.         final double timeWidth)
  124.     {
  125.         try
  126.         {
  127.             return new R1BrownianStochasticEvolver (
  128.                 new org.drip.dynamics.ito.R1WienerDriver (
  129.                     timeWidth
  130.                 )
  131.             );
  132.         }
  133.         catch (java.lang.Exception e)
  134.         {
  135.             e.printStackTrace();
  136.         }

  137.         return null;
  138.     }

  139.     /**
  140.      * R1BrownianStochasticEvolver Constructor
  141.      *
  142.      * @param r1StochasticDriver The Stochastic Driver
  143.      *
  144.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  145.      */

  146.     public R1BrownianStochasticEvolver (
  147.         final org.drip.dynamics.ito.R1StochasticDriver r1StochasticDriver)
  148.         throws java.lang.Exception
  149.     {
  150.         super (
  151.             new org.drip.dynamics.ito.R1ToR1Drift()
  152.             {
  153.                 @Override public double drift (
  154.                     final org.drip.dynamics.ito.TimeR1Vertex r1TimeVertex)
  155.                     throws java.lang.Exception
  156.                 {
  157.                     if (null == r1TimeVertex)
  158.                     {
  159.                         throw new java.lang.Exception (
  160.                             "R1BrownianStochasticEvolver::drift => Invalid Inputs"
  161.                         );
  162.                     }

  163.                     return 0.;
  164.                 }
  165.             },
  166.             new org.drip.dynamics.ito.R1ToR1Volatility()
  167.             {
  168.                 @Override public double volatility (
  169.                     final org.drip.dynamics.ito.TimeR1Vertex r1TimeVertex)
  170.                     throws java.lang.Exception
  171.                 {
  172.                     if (null == r1TimeVertex)
  173.                     {
  174.                         throw new java.lang.Exception (
  175.                             "R1BrownianStochasticEvolver::volatility => Invalid Inputs"
  176.                         );
  177.                     }

  178.                     return 1.;
  179.                 }
  180.             },
  181.             r1StochasticDriver
  182.         );
  183.     }

  184.     /**
  185.      * Compute the Expected Value of x at a time t from a Starting Value x0
  186.      *
  187.      * @param x0 Starting Variate
  188.      * @param t Time
  189.      *
  190.      * @return Expected Value of x
  191.      *
  192.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  193.      */

  194.     public double mean (
  195.         final double x0,
  196.         final double t)
  197.         throws java.lang.Exception
  198.     {
  199.         if (!org.drip.numerical.common.NumberUtil.IsValid (
  200.                 x0
  201.             ) || !org.drip.numerical.common.NumberUtil.IsValid (
  202.                 t
  203.             ) || 0. > t
  204.         )
  205.         {
  206.             throw new java.lang.Exception (
  207.                 "R1BrownianStochasticEvolver::mean => Invalid Inputs"
  208.             );
  209.         }

  210.         return x0;
  211.     }

  212.     /**
  213.      * Compute the Time Co-variance of x across Time Values t and s
  214.      *
  215.      * @param x0 Starting Variate
  216.      * @param s Time s
  217.      * @param t Time t
  218.      *
  219.      * @return Time Co-variance of x
  220.      *
  221.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  222.      */

  223.     public double timeCovariance (
  224.         final double x0,
  225.         final double s,
  226.         final double t)
  227.         throws java.lang.Exception
  228.     {
  229.         if (!org.drip.numerical.common.NumberUtil.IsValid (
  230.                 s
  231.             ) || 0. > s || !org.drip.numerical.common.NumberUtil.IsValid (
  232.                 t
  233.             ) || 0. > t
  234.         )
  235.         {
  236.             throw new java.lang.Exception (
  237.                 "R1BrownianStochasticEvolver::timeCovariance => Invalid Inputs"
  238.             );
  239.         }

  240.         return s > t ? s - t : t - s;
  241.     }

  242.     @Override public org.drip.measure.statistics.PopulationCentralMeasures
  243.         temporalPopulationCentralMeasures (
  244.             final double x0,
  245.             final double t)
  246.     {
  247.         try
  248.         {
  249.             return new org.drip.measure.statistics.PopulationCentralMeasures (
  250.                 x0,
  251.                 t
  252.             );
  253.         }
  254.         catch (java.lang.Exception e)
  255.         {
  256.             e.printStackTrace();
  257.         }

  258.         return null;
  259.     }

  260.     @Override public org.drip.measure.statistics.PopulationCentralMeasures
  261.         steadyStatePopulationCentralMeasures (
  262.             final double x0)
  263.     {
  264.         try
  265.         {
  266.             return new org.drip.measure.statistics.PopulationCentralMeasures (
  267.                 x0,
  268.                 java.lang.Double.POSITIVE_INFINITY
  269.             );
  270.         }
  271.         catch (java.lang.Exception e)
  272.         {
  273.             e.printStackTrace();
  274.         }

  275.         return null;
  276.     }

  277.     @Override public org.drip.dynamics.kolmogorov.R1FokkerPlanck fokkerPlanckGenerator()
  278.     {
  279.         try
  280.         {
  281.             return new org.drip.dynamics.kolmogorov.R1FokkerPlanckBrownian();
  282.         }
  283.         catch (java.lang.Exception e)
  284.         {
  285.             e.printStackTrace();
  286.         }

  287.         return null;
  288.     }
  289. }