R1VasicekStochasticEvolver.java
- package org.drip.dynamics.meanreverting;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>R1VasicekStochasticEvolver</i> implements the R<sup>1</sup> Vasicek Stochastic Evolver. The References
- * are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Doob, J. L. (1942): The Brownian Movement and Stochastic Equations <i>Annals of Mathematics</i>
- * <b>43 (2)</b> 351-369
- * </li>
- * <li>
- * Gardiner, C. W. (2009): <i>Stochastic Methods: A Handbook for the Natural and Social Sciences
- * 4<sup>th</sup> Edition</i> <b>Springer-Verlag</b>
- * </li>
- * <li>
- * Kadanoff, L. P. (2000): <i>Statistical Physics: Statics, Dynamics, and Re-normalization</i>
- * <b>World Scientific</b>
- * </li>
- * <li>
- * Karatzas, I., and S. E. Shreve (1991): <i>Brownian Motion and Stochastic Calculus 2<sup>nd</sup>
- * Edition</i> <b>Springer-Verlag</b>
- * </li>
- * <li>
- * Risken, H., and F. Till (1996): <i>The Fokker-Planck Equation – Methods of Solution and
- * Applications</i> <b>Springer</b>
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FixedIncomeAnalyticsLibrary.md">Fixed Income Analytics</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/README.md">HJM, Hull White, LMM, and SABR Dynamic Evolution Models</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/meanreverting/README.md">Mean Reverting Stochastic Process Dynamics</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class R1VasicekStochasticEvolver
- extends org.drip.dynamics.meanreverting.R1CKLSStochasticEvolver
- {
- /**
- * Construct a Weiner Instance of R1VasicekStochasticEvolver Process
- *
- * @param meanReversionSpeed The Mean Reversion Speed
- * @param meanReversionLevel The Mean Reversion Level
- * @param volatility The Volatility
- * @param timeWidth Wiener Time Width
- *
- * @return Weiner Instance of R1VasicekStochasticEvolver Process
- */
- public static R1VasicekStochasticEvolver Wiener (
- final double meanReversionSpeed,
- final double meanReversionLevel,
- final double volatility,
- final double timeWidth)
- {
- try
- {
- return new R1VasicekStochasticEvolver (
- meanReversionSpeed,
- meanReversionLevel,
- volatility,
- new org.drip.dynamics.ito.R1WienerDriver (
- timeWidth
- )
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * R1VasicekStochasticEvolver Constructor
- *
- * @param meanReversionSpeed The Mean Reversion Speed
- * @param meanReversionLevel The Mean Reversion Level
- * @param volatility The Volatility
- * @param r1StochasticDriver The Stochastic Driver
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public R1VasicekStochasticEvolver (
- final double meanReversionSpeed,
- final double meanReversionLevel,
- final double volatility,
- final org.drip.dynamics.ito.R1StochasticDriver r1StochasticDriver)
- throws java.lang.Exception
- {
- super (
- org.drip.dynamics.meanreverting.CKLSParameters.Vasicek (
- meanReversionSpeed,
- meanReversionLevel,
- volatility
- ),
- r1StochasticDriver
- );
- }
- /**
- * Compute the Expected Value of x at a time t from a Starting Value x0
- *
- * @param x0 Starting Variate
- * @param t Time
- *
- * @return Expected Value of x
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double mean (
- final double x0,
- final double t)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (
- x0
- ) || !org.drip.numerical.common.NumberUtil.IsValid (
- t
- ) || 0. > t
- )
- {
- throw new java.lang.Exception (
- "R1VasicekStochasticEvolver::mean => Invalid Inputs"
- );
- }
- double timeDecayFactor = java.lang.Math.exp (
- -1. * cklsParameters().meanReversionSpeed() * t
- );
- return x0 * timeDecayFactor + cklsParameters().meanReversionLevel() * (1. - timeDecayFactor);
- }
- /**
- * Compute the Time Co-variance of x across Time Values t and s
- *
- * @param x0 Starting Variate
- * @param s Time s
- * @param t Time t
- *
- * @return Time Co-variance of x
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double timeCovariance (
- final double x0,
- final double s,
- final double t)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (
- s
- ) || 0. > s || !org.drip.numerical.common.NumberUtil.IsValid (
- t
- ) || 0. > t
- )
- {
- throw new java.lang.Exception (
- "R1VasicekStochasticEvolver::timeCovariance => Invalid Inputs"
- );
- }
- double volatility = cklsParameters().volatilityCoefficient();
- double meanReversionSpeed = cklsParameters().meanReversionSpeed();
- return 0.5 * volatility * volatility / meanReversionSpeed *
- (
- (
- java.lang.Math.exp (
- -1. * meanReversionSpeed * java.lang.Math.abs (
- s - t
- )
- ) - java.lang.Math.exp (
- -1. * meanReversionSpeed * (s + t)
- )
- )
- );
- }
- @Override public org.drip.measure.statistics.PopulationCentralMeasures
- temporalPopulationCentralMeasures (
- final double x0,
- final double t)
- {
- try
- {
- return new org.drip.measure.statistics.PopulationCentralMeasures (
- mean (
- x0,
- t
- ),
- timeCovariance (
- x0,
- t,
- t
- )
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- @Override public org.drip.measure.statistics.PopulationCentralMeasures
- steadyStatePopulationCentralMeasures (
- final double x0)
- {
- double volatility = cklsParameters().volatilityCoefficient();
- try
- {
- return new org.drip.measure.statistics.PopulationCentralMeasures (
- cklsParameters().meanReversionLevel(),
- 0.5 * volatility * volatility / cklsParameters().meanReversionSpeed()
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Ait-Sahalia Maximum Likelihood Estimation Sampling Interval Discreteness Error
- *
- * @param intervalWidth Sampling Interval Width
- *
- * @return The Ait-Sahalia Maximum Likelihood Estimation Sampling Interval Discreteness Error
- */
- public double[][] aitSahaliaMLEAsymptote (
- final double intervalWidth)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (
- intervalWidth
- ) || 0. >= intervalWidth
- )
- {
- return null;
- }
- double volatility = cklsParameters().volatilityCoefficient();
- double meanReversionSpeed = cklsParameters().meanReversionSpeed();
- double tTheta = intervalWidth * meanReversionSpeed;
- double tSquaredThetaSquared = tTheta * tTheta;
- double ePower_TTheta_ = java.lang.Math.exp (
- tTheta
- );
- double ePower_TwoTTheta_ = ePower_TTheta_ * ePower_TTheta_;
- double ePower_TwoTTheta_MinusOne = ePower_TwoTTheta_ - 1.;
- double sigmaSquared = volatility * volatility;
- double[][] aitSahaliaMLEAsymptote = new double[3][3];
- double tSquared = intervalWidth * intervalWidth;
- aitSahaliaMLEAsymptote[0][0] = ePower_TwoTTheta_MinusOne / tSquared;
- aitSahaliaMLEAsymptote[0][1] = 0.;
- aitSahaliaMLEAsymptote[0][2] = sigmaSquared * ePower_TwoTTheta_MinusOne *
- (ePower_TwoTTheta_MinusOne - 2. * intervalWidth) / tSquared / meanReversionSpeed;
- aitSahaliaMLEAsymptote[1][0] = 0.;
- aitSahaliaMLEAsymptote[1][1] = 0.5 * sigmaSquared * (ePower_TTheta_ + 1.) / (ePower_TTheta_ - 1.) /
- meanReversionSpeed;
- aitSahaliaMLEAsymptote[1][2] = 0.;
- aitSahaliaMLEAsymptote[2][0] = aitSahaliaMLEAsymptote[0][2];
- aitSahaliaMLEAsymptote[2][1] = 0.;
- aitSahaliaMLEAsymptote[2][2] = sigmaSquared * sigmaSquared * (
- ePower_TwoTTheta_MinusOne * ePower_TwoTTheta_MinusOne +
- 2. * tSquaredThetaSquared * (ePower_TwoTTheta_ + 1.) +
- 4. * tTheta * ePower_TwoTTheta_MinusOne
- ) / (ePower_TwoTTheta_MinusOne * tSquaredThetaSquared);
- return aitSahaliaMLEAsymptote;
- }
- }