R1VasicekStochasticEvolver.java

  1. package org.drip.dynamics.meanreverting;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>R1VasicekStochasticEvolver</i> implements the R<sup>1</sup> Vasicek Stochastic Evolver. The References
  76.  *  are:
  77.  *  
  78.  *  <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Doob, J. L. (1942): The Brownian Movement and Stochastic Equations <i>Annals of Mathematics</i>
  82.  *              <b>43 (2)</b> 351-369
  83.  *      </li>
  84.  *      <li>
  85.  *          Gardiner, C. W. (2009): <i>Stochastic Methods: A Handbook for the Natural and Social Sciences
  86.  *              4<sup>th</sup> Edition</i> <b>Springer-Verlag</b>
  87.  *      </li>
  88.  *      <li>
  89.  *          Kadanoff, L. P. (2000): <i>Statistical Physics: Statics, Dynamics, and Re-normalization</i>
  90.  *              <b>World Scientific</b>
  91.  *      </li>
  92.  *      <li>
  93.  *          Karatzas, I., and S. E. Shreve (1991): <i>Brownian Motion and Stochastic Calculus 2<sup>nd</sup>
  94.  *              Edition</i> <b>Springer-Verlag</b>
  95.  *      </li>
  96.  *      <li>
  97.  *          Risken, H., and F. Till (1996): <i>The Fokker-Planck Equation – Methods of Solution and
  98.  *              Applications</i> <b>Springer</b>
  99.  *      </li>
  100.  *  </ul>
  101.  *
  102.  *  <br><br>
  103.  *  <ul>
  104.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
  105.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FixedIncomeAnalyticsLibrary.md">Fixed Income Analytics</a></li>
  106.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/README.md">HJM, Hull White, LMM, and SABR Dynamic Evolution Models</a></li>
  107.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/dynamics/meanreverting/README.md">Mean Reverting Stochastic Process Dynamics</a></li>
  108.  *  </ul>
  109.  *
  110.  * @author Lakshmi Krishnamurthy
  111.  */

  112. public class R1VasicekStochasticEvolver
  113.     extends org.drip.dynamics.meanreverting.R1CKLSStochasticEvolver
  114. {

  115.     /**
  116.      * Construct a Weiner Instance of R1VasicekStochasticEvolver Process
  117.      *
  118.      * @param meanReversionSpeed The Mean Reversion Speed
  119.      * @param meanReversionLevel The Mean Reversion Level
  120.      * @param volatility The Volatility
  121.      * @param timeWidth Wiener Time Width
  122.      *
  123.      * @return Weiner Instance of R1VasicekStochasticEvolver Process
  124.      */

  125.     public static R1VasicekStochasticEvolver Wiener (
  126.         final double meanReversionSpeed,
  127.         final double meanReversionLevel,
  128.         final double volatility,
  129.         final double timeWidth)
  130.     {
  131.         try
  132.         {
  133.             return new R1VasicekStochasticEvolver (
  134.                 meanReversionSpeed,
  135.                 meanReversionLevel,
  136.                 volatility,
  137.                 new org.drip.dynamics.ito.R1WienerDriver (
  138.                     timeWidth
  139.                 )
  140.             );
  141.         }
  142.         catch (java.lang.Exception e)
  143.         {
  144.             e.printStackTrace();
  145.         }

  146.         return null;
  147.     }

  148.     /**
  149.      * R1VasicekStochasticEvolver Constructor
  150.      *
  151.      * @param meanReversionSpeed The Mean Reversion Speed
  152.      * @param meanReversionLevel The Mean Reversion Level
  153.      * @param volatility The Volatility
  154.      * @param r1StochasticDriver The Stochastic Driver
  155.      *
  156.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  157.      */

  158.     public R1VasicekStochasticEvolver (
  159.         final double meanReversionSpeed,
  160.         final double meanReversionLevel,
  161.         final double volatility,
  162.         final org.drip.dynamics.ito.R1StochasticDriver r1StochasticDriver)
  163.         throws java.lang.Exception
  164.     {
  165.         super (
  166.             org.drip.dynamics.meanreverting.CKLSParameters.Vasicek (
  167.                 meanReversionSpeed,
  168.                 meanReversionLevel,
  169.                 volatility
  170.             ),
  171.             r1StochasticDriver
  172.         );
  173.     }

  174.     /**
  175.      * Compute the Expected Value of x at a time t from a Starting Value x0
  176.      *
  177.      * @param x0 Starting Variate
  178.      * @param t Time
  179.      *
  180.      * @return Expected Value of x
  181.      *
  182.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  183.      */

  184.     public double mean (
  185.         final double x0,
  186.         final double t)
  187.         throws java.lang.Exception
  188.     {
  189.         if (!org.drip.numerical.common.NumberUtil.IsValid (
  190.                 x0
  191.             ) || !org.drip.numerical.common.NumberUtil.IsValid (
  192.                 t
  193.             ) || 0. > t
  194.         )
  195.         {
  196.             throw new java.lang.Exception (
  197.                 "R1VasicekStochasticEvolver::mean => Invalid Inputs"
  198.             );
  199.         }

  200.         double timeDecayFactor = java.lang.Math.exp (
  201.             -1. * cklsParameters().meanReversionSpeed() * t
  202.         );

  203.         return x0 * timeDecayFactor + cklsParameters().meanReversionLevel() * (1. - timeDecayFactor);
  204.     }

  205.     /**
  206.      * Compute the Time Co-variance of x across Time Values t and s
  207.      *
  208.      * @param x0 Starting Variate
  209.      * @param s Time s
  210.      * @param t Time t
  211.      *
  212.      * @return Time Co-variance of x
  213.      *
  214.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  215.      */

  216.     public double timeCovariance (
  217.         final double x0,
  218.         final double s,
  219.         final double t)
  220.         throws java.lang.Exception
  221.     {
  222.         if (!org.drip.numerical.common.NumberUtil.IsValid (
  223.                 s
  224.             ) || 0. > s || !org.drip.numerical.common.NumberUtil.IsValid (
  225.                 t
  226.             ) || 0. > t
  227.         )
  228.         {
  229.             throw new java.lang.Exception (
  230.                 "R1VasicekStochasticEvolver::timeCovariance => Invalid Inputs"
  231.             );
  232.         }

  233.         double volatility = cklsParameters().volatilityCoefficient();

  234.         double meanReversionSpeed = cklsParameters().meanReversionSpeed();

  235.         return 0.5 * volatility * volatility / meanReversionSpeed *
  236.         (
  237.             (
  238.                 java.lang.Math.exp (
  239.                     -1. * meanReversionSpeed * java.lang.Math.abs (
  240.                         s - t
  241.                     )
  242.                 ) - java.lang.Math.exp (
  243.                     -1. * meanReversionSpeed * (s + t)
  244.                 )
  245.             )
  246.         );
  247.     }

  248.     @Override public org.drip.measure.statistics.PopulationCentralMeasures
  249.         temporalPopulationCentralMeasures (
  250.             final double x0,
  251.             final double t)
  252.     {
  253.         try
  254.         {
  255.             return new org.drip.measure.statistics.PopulationCentralMeasures (
  256.                 mean (
  257.                     x0,
  258.                     t
  259.                 ),
  260.                 timeCovariance (
  261.                     x0,
  262.                     t,
  263.                     t
  264.                 )
  265.             );
  266.         }
  267.         catch (java.lang.Exception e)
  268.         {
  269.             e.printStackTrace();
  270.         }

  271.         return null;
  272.     }

  273.     @Override public org.drip.measure.statistics.PopulationCentralMeasures
  274.         steadyStatePopulationCentralMeasures (
  275.             final double x0)
  276.     {
  277.         double volatility = cklsParameters().volatilityCoefficient();

  278.         try
  279.         {
  280.             return new org.drip.measure.statistics.PopulationCentralMeasures (
  281.                 cklsParameters().meanReversionLevel(),
  282.                 0.5 * volatility * volatility / cklsParameters().meanReversionSpeed()
  283.             );
  284.         }
  285.         catch (java.lang.Exception e)
  286.         {
  287.             e.printStackTrace();
  288.         }

  289.         return null;
  290.     }

  291.     /**
  292.      * Construct the Ait-Sahalia Maximum Likelihood Estimation Sampling Interval Discreteness Error
  293.      *
  294.      * @param intervalWidth Sampling Interval Width
  295.      *
  296.      * @return The Ait-Sahalia Maximum Likelihood Estimation Sampling Interval Discreteness Error
  297.      */

  298.     public double[][] aitSahaliaMLEAsymptote (
  299.         final double intervalWidth)
  300.     {
  301.         if (!org.drip.numerical.common.NumberUtil.IsValid (
  302.                 intervalWidth
  303.             ) || 0. >= intervalWidth
  304.         )
  305.         {
  306.             return null;
  307.         }

  308.         double volatility = cklsParameters().volatilityCoefficient();

  309.         double meanReversionSpeed = cklsParameters().meanReversionSpeed();

  310.         double tTheta = intervalWidth * meanReversionSpeed;
  311.         double tSquaredThetaSquared = tTheta * tTheta;

  312.         double ePower_TTheta_ = java.lang.Math.exp (
  313.             tTheta
  314.         );

  315.         double ePower_TwoTTheta_ = ePower_TTheta_ * ePower_TTheta_;
  316.         double ePower_TwoTTheta_MinusOne = ePower_TwoTTheta_ - 1.;
  317.         double sigmaSquared = volatility * volatility;
  318.         double[][] aitSahaliaMLEAsymptote = new double[3][3];
  319.         double tSquared = intervalWidth * intervalWidth;
  320.         aitSahaliaMLEAsymptote[0][0] = ePower_TwoTTheta_MinusOne / tSquared;
  321.         aitSahaliaMLEAsymptote[0][1] = 0.;
  322.         aitSahaliaMLEAsymptote[0][2] = sigmaSquared * ePower_TwoTTheta_MinusOne *
  323.             (ePower_TwoTTheta_MinusOne - 2. * intervalWidth) / tSquared / meanReversionSpeed;
  324.         aitSahaliaMLEAsymptote[1][0] = 0.;
  325.         aitSahaliaMLEAsymptote[1][1] = 0.5 * sigmaSquared * (ePower_TTheta_ + 1.) / (ePower_TTheta_ - 1.) /
  326.             meanReversionSpeed;
  327.         aitSahaliaMLEAsymptote[1][2] = 0.;
  328.         aitSahaliaMLEAsymptote[2][0] = aitSahaliaMLEAsymptote[0][2];
  329.         aitSahaliaMLEAsymptote[2][1] = 0.;
  330.         aitSahaliaMLEAsymptote[2][2] = sigmaSquared * sigmaSquared * (
  331.             ePower_TwoTTheta_MinusOne * ePower_TwoTTheta_MinusOne +
  332.             2. * tSquaredThetaSquared * (ePower_TwoTTheta_ + 1.) +
  333.             4. * tTheta * ePower_TwoTTheta_MinusOne
  334.         ) / (ePower_TwoTTheta_MinusOne * tSquaredThetaSquared);
  335.         return aitSahaliaMLEAsymptote;
  336.     }
  337. }