TrajectoryShortfallAggregate.java
- package org.drip.execution.capture;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>TrajectoryShortfallAggregate</i> aggregates the Execution Short-fall Distribution across each Interval
- * in the Trade. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Almgren, R., and N. Chriss (1999): Value under Liquidation <i>Risk</i> <b>12 (12)</b>
- * </li>
- * <li>
- * Almgren, R., and N. Chriss (2000): Optimal Execution of Portfolio Transactions <i>Journal of
- * Risk</i> <b>3 (2)</b> 5-39
- * </li>
- * <li>
- * Bertsimas, D., and A. W. Lo (1998): Optimal Control of Execution Costs <i>Journal of Financial
- * Markets</i> <b>1</b> 1-50
- * </li>
- * <li>
- * Chan, L. K. C., and J. Lakonishak (1995): The Behavior of Stock Prices around Institutional
- * Trades <i>Journal of Finance</i> <b>50</b> 1147-1174
- * </li>
- * <li>
- * Keim, D. B., and A. Madhavan (1997): Transaction Costs and Investment Style: An Inter-exchange
- * Analysis of Institutional Equity Trades <i>Journal of Financial Economics</i> <b>46</b>
- * 265-292
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/TransactionCostAnalyticsLibrary.md">Transaction Cost Analytics</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/README.md">Optimal Impact/Capture Based Trading Trajectories - Deterministic, Stochastic, Static, and Dynamic</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/capture/README.md">Execution Trajectory Transaction Cost Capture</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class TrajectoryShortfallAggregate {
- private java.util.List<org.drip.execution.discrete.ShortfallIncrementDistribution> _lsSID = null;
- /**
- * TrajectoryShortfallAggregate Constructor
- *
- * @param lsSID List of the Incremental Slice Short-fall Distributions
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public TrajectoryShortfallAggregate (
- final java.util.List<org.drip.execution.discrete.ShortfallIncrementDistribution> lsSID)
- throws java.lang.Exception
- {
- if (null == (_lsSID = lsSID))
- throw new java.lang.Exception ("TrajectoryShortfallAggregate Constructor => Invalid Inputs");
- int iNumInterval = _lsSID.size();
- if (0 == iNumInterval)
- throw new java.lang.Exception ("TrajectoryShortfallAggregate Constructor => Invalid Inputs");
- for (org.drip.execution.discrete.ShortfallIncrementDistribution sid : _lsSID) {
- if (null == sid)
- throw new java.lang.Exception ("TrajectoryShortfallAggregate Constructor => Invalid Inputs");
- }
- }
- /**
- * Retrieve the List of the Interval Cost Distributions
- *
- * @return The List of the Interval Cost Distributions
- */
- public java.util.List<org.drip.execution.discrete.ShortfallIncrementDistribution> list()
- {
- return _lsSID;
- }
- /**
- * Generate the Total Cost R^1 Normal Distribution
- *
- * @return The Total Cost R^1 Normal Distribution
- */
- public org.drip.measure.gaussian.R1UnivariateNormal totalCostDistribution()
- {
- double dblTotalCostMean = 0.;
- double dblTotalCostVariance = 0.;
- for (org.drip.measure.gaussian.R1UnivariateNormal r1un : _lsSID) {
- dblTotalCostMean = dblTotalCostMean + r1un.mean();
- dblTotalCostVariance = dblTotalCostVariance + r1un.variance();
- }
- try {
- return new org.drip.measure.gaussian.R1UnivariateNormal (dblTotalCostMean, java.lang.Math.sqrt
- (dblTotalCostVariance));
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Array of Incremental Expectation Sequence
- *
- * @return The Array of Incremental Expectation Sequence
- */
- public double[] incrementalExpectation()
- {
- int iNumInterval = _lsSID.size();
- double[] adblIncrementalExpectationSequence = new double[iNumInterval];
- for (int i = 0; i < iNumInterval; ++i)
- adblIncrementalExpectationSequence[i] = _lsSID.get (i).mean();
- return adblIncrementalExpectationSequence;
- }
- /**
- * Generate the Array of Cumulative Expectation Sequence
- *
- * @return The Array of Cumulative Expectation Sequence
- */
- public double[] cumulativeExpectation()
- {
- int iNumInterval = _lsSID.size();
- double[] adblCumulativeExpectationSequence = new double[iNumInterval];
- for (int i = 0; i < iNumInterval; ++i)
- adblCumulativeExpectationSequence[i] = 0 == i ? _lsSID.get (i).expectation() :
- adblCumulativeExpectationSequence[i - 1] + _lsSID.get (i).expectation();
- return adblCumulativeExpectationSequence;
- }
- /**
- * Generate the Array of Incremental Variance Sequence
- *
- * @return The Array of Incremental Variance Sequence
- */
- public double[] incrementalVariance()
- {
- int iNumInterval = _lsSID.size();
- double[] adblIncrementalVarianceSequence = new double[iNumInterval];
- for (int i = 0; i < iNumInterval; ++i)
- adblIncrementalVarianceSequence[i] = _lsSID.get (i).variance();
- return adblIncrementalVarianceSequence;
- }
- /**
- * Generate the Array of Cumulative Variance Sequence
- *
- * @return The Array of Cumulative Variance Sequence
- */
- public double[] cumulativeVariance()
- {
- int iNumInterval = _lsSID.size();
- double[] adblCumulativeVarianceSequence = new double[iNumInterval];
- for (int i = 0; i < iNumInterval; ++i)
- adblCumulativeVarianceSequence[i] = 0 == i ? _lsSID.get (i).variance() :
- adblCumulativeVarianceSequence[i - 1] + _lsSID.get (i).variance();
- return adblCumulativeVarianceSequence;
- }
- /**
- * Generate the Array of Incremental Market Dynamic Expectation Sequence
- *
- * @return The Array of Incremental Market Dynamic Expectation Sequence
- */
- public double[] incrementalMarketDynamicExpectation()
- {
- int iNumInterval = _lsSID.size();
- double[] adblIncrementalMarketDynamicExpectationSequence = new double[iNumInterval];
- for (int i = 0; i < iNumInterval; ++i)
- adblIncrementalMarketDynamicExpectationSequence[i] = _lsSID.get (i).marketDynamicExpectation();
- return adblIncrementalMarketDynamicExpectationSequence;
- }
- /**
- * Generate the Array of Cumulative Market Dynamic Expectation Sequence
- *
- * @return The Array of Cumulative Market Dynamic Expectation Sequence
- */
- public double[] cumulativeMarketDynamicExpectation()
- {
- int iNumInterval = _lsSID.size();
- double[] adblCumulativeMarketDynamicExpectationSequence = new double[iNumInterval];
- for (int i = 0; i < iNumInterval; ++i)
- adblCumulativeMarketDynamicExpectationSequence[i] = 0 == i ? _lsSID.get
- (i).marketDynamicExpectation() : adblCumulativeMarketDynamicExpectationSequence[i - 1] +
- _lsSID.get (i).marketDynamicExpectation();
- return adblCumulativeMarketDynamicExpectationSequence;
- }
- /**
- * Generate the Array of Incremental Permanent Impact Expectation Sequence
- *
- * @return The Array of Incremental Permanent Impact Expectation Sequence
- */
- public double[] incrementalPermanentImpactExpectation()
- {
- int iNumInterval = _lsSID.size();
- double[] adblIncrementalPermanentImpactExpectationSequence = new double[iNumInterval];
- for (int i = 0; i < iNumInterval; ++i)
- adblIncrementalPermanentImpactExpectationSequence[i] = _lsSID.get
- (i).permanentImpactExpectation();
- return adblIncrementalPermanentImpactExpectationSequence;
- }
- /**
- * Generate the Array of Cumulative Permanent Impact Expectation Sequence
- *
- * @return The Array of Cumulative Permanent Impact Expectation Sequence
- */
- public double[] cumulativePermanentImpactExpectation()
- {
- int iNumInterval = _lsSID.size();
- double[] adblCumulativePermanentImpactExpectationSequence = new double[iNumInterval];
- for (int i = 0; i < iNumInterval; ++i)
- adblCumulativePermanentImpactExpectationSequence[i] = 0 == i ? _lsSID.get
- (i).permanentImpactExpectation() : adblCumulativePermanentImpactExpectationSequence[i - 1] +
- _lsSID.get (i).permanentImpactExpectation();
- return adblCumulativePermanentImpactExpectationSequence;
- }
- /**
- * Generate the Array of Incremental Temporary Impact Expectation Sequence
- *
- * @return The Array of Incremental Temporary Impact Expectation Sequence
- */
- public double[] incrementalTemporaryImpactExpectation()
- {
- int iNumInterval = _lsSID.size();
- double[] adblIncrementalTemporaryImpactExpectationSequence = new double[iNumInterval];
- for (int i = 0; i < iNumInterval; ++i)
- adblIncrementalTemporaryImpactExpectationSequence[i] = _lsSID.get
- (i).temporaryImpactExpectation();
- return adblIncrementalTemporaryImpactExpectationSequence;
- }
- /**
- * Generate the Array of Cumulative Temporary Impact Expectation Sequence
- *
- * @return The Array of Cumulative Temporary Impact Expectation Sequence
- */
- public double[] cumulativeTemporaryImpactExpectation()
- {
- int iNumInterval = _lsSID.size();
- double[] adblCumulativeTemporaryImpactExpectationSequence = new double[iNumInterval];
- for (int i = 0; i < iNumInterval; ++i)
- adblCumulativeTemporaryImpactExpectationSequence[i] = 0 == i ? _lsSID.get
- (i).temporaryImpactExpectation() : adblCumulativeTemporaryImpactExpectationSequence[i - 1] +
- _lsSID.get (i).temporaryImpactExpectation();
- return adblCumulativeTemporaryImpactExpectationSequence;
- }
- /**
- * Generate the Expected Short-fall
- *
- * @return The Expected Short-fall
- */
- public double shortfallExpectation()
- {
- int iNumInterval = _lsSID.size();
- double dblExpectedShortfall = 0.;
- for (int i = 0; i < iNumInterval; ++i)
- dblExpectedShortfall = dblExpectedShortfall + _lsSID.get (i).expectation();
- return dblExpectedShortfall;
- }
- /**
- * Generate the Short-fall Variance
- *
- * @return The Short-fall Variance
- */
- public double shortfallVariance()
- {
- int iNumInterval = _lsSID.size();
- double dblShortfallVariance = 0.;
- for (int i = 0; i < iNumInterval; ++i)
- dblShortfallVariance = dblShortfallVariance + _lsSID.get (i).variance();
- return dblShortfallVariance;
- }
- }