TrajectoryShortfallEstimator.java
package org.drip.execution.capture;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2020 Lakshmi Krishnamurthy
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
* and computational support.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
*
* DROP Product Core implements libraries for the following:
* - Fixed Income Analytics
* - Loan Analytics
* - Transaction Cost Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Asset Liability Management Analytics
* - Capital Estimation Analytics
* - Exposure Analytics
* - Margin Analytics
* - XVA Analytics
*
* DROP Computational Core implements libraries for the following:
* - Algorithm Support
* - Computation Support
* - Function Analysis
* - Model Validation
* - Numerical Analysis
* - Numerical Optimizer
* - Spline Builder
* - Statistical Learning
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>TrajectoryShortfallEstimator</i> estimates the Price/Short Fall Distribution associated with the
* Trading Trajectory generated using the specified Evolution Parameters. The References are:
*
* <br><br>
* <ul>
* <li>
* Almgren, R., and N. Chriss (1999): Value under Liquidation <i>Risk</i> <b>12 (12)</b>
* </li>
* <li>
* Almgren, R., and N. Chriss (2000): Optimal Execution of Portfolio Transactions <i>Journal of
* Risk</i> <b>3 (2)</b> 5-39
* </li>
* <li>
* Bertsimas, D., and A. W. Lo (1998): Optimal Control of Execution Costs <i>Journal of Financial
* Markets</i> <b>1</b> 1-50
* </li>
* <li>
* Chan, L. K. C., and J. Lakonishak (1995): The Behavior of Stock Prices around Institutional
* Trades <i>Journal of Finance</i> <b>50</b> 1147-1174
* </li>
* <li>
* Keim, D. B., and A. Madhavan (1997): Transaction Costs and Investment Style: An Inter-exchange
* Analysis of Institutional Equity Trades <i>Journal of Financial Economics</i> <b>46</b>
* 265-292
* </li>
* </ul>
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/TransactionCostAnalyticsLibrary.md">Transaction Cost Analytics</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/README.md">Optimal Impact/Capture Based Trading Trajectories - Deterministic, Stochastic, Static, and Dynamic</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/capture/README.md">Execution Trajectory Transaction Cost Capture</a></li>
* </ul>
*
* @author Lakshmi Krishnamurthy
*/
public class TrajectoryShortfallEstimator implements
org.drip.execution.sensitivity.ControlNodesGreekGenerator {
private org.drip.execution.strategy.DiscreteTradingTrajectory _tt = null;
/**
* TrajectoryShortfallEstimator Constructor
*
* @param tt The Trading Trajectory Instance
*
* @throws java.lang.Exception Thrown if the Inputs are Invalid
*/
public TrajectoryShortfallEstimator (
final org.drip.execution.strategy.DiscreteTradingTrajectory tt)
throws java.lang.Exception
{
if (null == (_tt = tt))
throw new java.lang.Exception ("TrajectoryShortfallEstimator Constructor => Invalid Inputs");
}
/**
* Retrieve the Underlying Trading Trajectory Instance
*
* @return The Underlying Trading Trajectory Instance
*/
public org.drip.execution.strategy.DiscreteTradingTrajectory trajectory()
{
return _tt;
}
/**
* Generate the Detailed Cost Realization Sequence given the Specified Inputs
*
* @param dblStartingEquilibriumPrice The Starting Equilibrium Price
* @param aWS Array of the Realized Walk Random Variable Suite
* @param apep The Price Evolution Parameters
*
* @return The Detailed Cost Realization Sequence given the Specified Inputs
*/
public org.drip.execution.capture.TrajectoryShortfallRealization totalCostRealizationDetail (
final double dblStartingEquilibriumPrice,
final org.drip.execution.dynamics.WalkSuite[] aWS,
final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
{
if (!org.drip.numerical.common.NumberUtil.IsValid (dblStartingEquilibriumPrice) || null == aWS)
return null;
double[] adblExecutionTimeNode = _tt.executionTimeNode();
double[] adblHoldings = _tt.holdings();
int iNumTimeNode = adblExecutionTimeNode.length;
double dblPreviousEquilibriumPrice = dblStartingEquilibriumPrice;
if (aWS.length + 1 != iNumTimeNode) return null;
java.util.List<org.drip.execution.discrete.ShortfallIncrement> lsSI = new
java.util.ArrayList<org.drip.execution.discrete.ShortfallIncrement>();
for (int i = 1; i < iNumTimeNode; ++i) {
org.drip.execution.discrete.ShortfallIncrement si = null;
try {
si = ( new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1])).costIncrementRealization
(dblPreviousEquilibriumPrice, aWS[i - 1], apep);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
if (null == si) return null;
lsSI.add (si);
dblPreviousEquilibriumPrice = si.compositePriceIncrement().newEquilibriumPrice();
}
try {
return new org.drip.execution.capture.TrajectoryShortfallRealization (lsSI);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Generate the Detailed Total Cost Distribution for the Trading Trajectory
*
* @param apep The Price Evolution Parameters
*
* @return The Detailed Total Cost Distribution for the Trading Trajectory
*/
public org.drip.execution.capture.TrajectoryShortfallAggregate totalCostDistributionDetail (
final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
{
double[] adblExecutionTimeNode = _tt.executionTimeNode();
double[] adblHoldings = _tt.holdings();
int iNumTimeNode = adblExecutionTimeNode.length;
java.util.List<org.drip.execution.discrete.ShortfallIncrementDistribution> lsSID = new
java.util.ArrayList<org.drip.execution.discrete.ShortfallIncrementDistribution>();
for (int i = 1; i < iNumTimeNode; ++i) {
org.drip.execution.discrete.Slice s = null;
try {
s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
lsSID.add (s.costIncrementDistribution (apep));
}
try {
return new org.drip.execution.capture.TrajectoryShortfallAggregate (lsSID);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Generate the Total Cost Distribution Synopsis Distribution for the Trading Trajectory
*
* @param apep Arithmetic Price Evolution Parameters Instance
*
* @return The Total Cost Distribution Synopsis Distribution for the Trading Trajectory
*/
public org.drip.measure.gaussian.R1UnivariateNormal totalCostDistributionSynopsis (
final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
{
org.drip.execution.capture.TrajectoryShortfallAggregate tsa = totalCostDistributionDetail (apep);
return null == tsa ? null : tsa.totalCostDistribution();
}
@Override public org.drip.execution.sensitivity.ControlNodesGreek permanentImpactExpectation (
final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
{
double[] adblExecutionTimeNode = _tt.executionTimeNode();
double dblValue = 0.;
int iNumTimeNode = adblExecutionTimeNode.length;
double[] adblTrajectoryJacobian = new double[iNumTimeNode];
double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];
double[] adblHoldings = _tt.holdings();
java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();
for (int i = 1; i < iNumTimeNode; ++i) {
org.drip.execution.discrete.Slice s = null;
try {
s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
org.drip.execution.sensitivity.ControlNodesGreek cng = s.permanentImpactExpectation (apep);
if (null == cng) return null;
lsCNG.add (cng);
dblValue = dblValue + cng.value();
double[] adblSliceJacobian = cng.jacobian();
double[][] aadblSliceHessian = cng.hessian();
adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
aadblSliceHessian[0][0];
}
try {
return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public org.drip.execution.sensitivity.ControlNodesGreek permanentImpactVariance (
final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
{
double[] adblExecutionTimeNode = _tt.executionTimeNode();
double dblValue = 0.;
int iNumTimeNode = adblExecutionTimeNode.length;
double[] adblTrajectoryJacobian = new double[iNumTimeNode];
double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];
double[] adblHoldings = _tt.holdings();
java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();
for (int i = 1; i < iNumTimeNode; ++i) {
org.drip.execution.discrete.Slice s = null;
try {
s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
org.drip.execution.sensitivity.ControlNodesGreek cng = s.permanentImpactVariance (apep);
if (null == cng) return null;
lsCNG.add (cng);
dblValue = dblValue + cng.value();
double[] adblSliceJacobian = cng.jacobian();
double[][] aadblSliceHessian = cng.hessian();
adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
aadblSliceHessian[0][0];
}
try {
return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public org.drip.execution.sensitivity.ControlNodesGreek temporaryImpactExpectation (
final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
{
double[] adblExecutionTimeNode = _tt.executionTimeNode();
double dblValue = 0.;
int iNumTimeNode = adblExecutionTimeNode.length;
double[] adblTrajectoryJacobian = new double[iNumTimeNode];
double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];
double[] adblHoldings = _tt.holdings();
java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();
for (int i = 1; i < iNumTimeNode; ++i) {
org.drip.execution.discrete.Slice s = null;
try {
s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
org.drip.execution.sensitivity.ControlNodesGreek cng = s.temporaryImpactExpectation (apep);
if (null == cng) return null;
lsCNG.add (cng);
dblValue = dblValue + cng.value();
double[] adblSliceJacobian = cng.jacobian();
double[][] aadblSliceHessian = cng.hessian();
adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
aadblSliceHessian[0][0];
}
try {
return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public org.drip.execution.sensitivity.ControlNodesGreek temporaryImpactVariance (
final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
{
double[] adblExecutionTimeNode = _tt.executionTimeNode();
double dblValue = 0.;
int iNumTimeNode = adblExecutionTimeNode.length;
double[] adblTrajectoryJacobian = new double[iNumTimeNode];
double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];
double[] adblHoldings = _tt.holdings();
java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();
for (int i = 1; i < iNumTimeNode; ++i) {
org.drip.execution.discrete.Slice s = null;
try {
s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
org.drip.execution.sensitivity.ControlNodesGreek cng = s.temporaryImpactVariance (apep);
if (null == cng) return null;
lsCNG.add (cng);
dblValue = dblValue + cng.value();
double[] adblSliceJacobian = cng.jacobian();
double[][] aadblSliceHessian = cng.hessian();
adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
aadblSliceHessian[0][0];
}
try {
return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public org.drip.execution.sensitivity.ControlNodesGreek marketDynamicsExpectation (
final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
{
double[] adblExecutionTimeNode = _tt.executionTimeNode();
double dblValue = 0.;
int iNumTimeNode = adblExecutionTimeNode.length;
double[] adblTrajectoryJacobian = new double[iNumTimeNode];
double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];
double[] adblHoldings = _tt.holdings();
java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();
for (int i = 1; i < iNumTimeNode; ++i) {
org.drip.execution.discrete.Slice s = null;
try {
s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
org.drip.execution.sensitivity.ControlNodesGreek cng = s.marketDynamicsExpectation (apep);
if (null == cng) return null;
lsCNG.add (cng);
dblValue = dblValue + cng.value();
double[] adblSliceJacobian = cng.jacobian();
double[][] aadblSliceHessian = cng.hessian();
adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
aadblSliceHessian[0][0];
}
try {
return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public org.drip.execution.sensitivity.ControlNodesGreek marketDynamicsVariance (
final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
{
double[] adblExecutionTimeNode = _tt.executionTimeNode();
double dblValue = 0.;
int iNumTimeNode = adblExecutionTimeNode.length;
double[] adblTrajectoryJacobian = new double[iNumTimeNode];
double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];
double[] adblHoldings = _tt.holdings();
java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();
for (int i = 1; i < iNumTimeNode; ++i) {
org.drip.execution.discrete.Slice s = null;
try {
s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
org.drip.execution.sensitivity.ControlNodesGreek cng = s.marketDynamicsVariance (apep);
if (null == cng) return null;
lsCNG.add (cng);
dblValue = dblValue + cng.value();
double[] adblSliceJacobian = cng.jacobian();
double[][] aadblSliceHessian = cng.hessian();
adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
aadblSliceHessian[0][0];
}
try {
return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public org.drip.execution.sensitivity.ControlNodesGreek expectationContribution (
final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
{
double[] adblExecutionTimeNode = _tt.executionTimeNode();
double dblValue = 0.;
int iNumTimeNode = adblExecutionTimeNode.length;
double[] adblTrajectoryJacobian = new double[iNumTimeNode];
double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];
double[] adblHoldings = _tt.holdings();
java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();
for (int i = 1; i < iNumTimeNode; ++i) {
org.drip.execution.discrete.Slice s = null;
try {
s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
org.drip.execution.sensitivity.ControlNodesGreek cng = s.expectationContribution (apep);
if (null == cng) return null;
lsCNG.add (cng);
dblValue = dblValue + cng.value();
double[] adblSliceJacobian = cng.jacobian();
double[][] aadblSliceHessian = cng.hessian();
adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
aadblSliceHessian[0][0];
}
try {
return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
@Override public org.drip.execution.sensitivity.ControlNodesGreek varianceContribution (
final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
{
double[] adblExecutionTimeNode = _tt.executionTimeNode();
double dblValue = 0.;
int iNumTimeNode = adblExecutionTimeNode.length;
double[] adblTrajectoryJacobian = new double[iNumTimeNode];
double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];
double[] adblHoldings = _tt.holdings();
java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();
for (int i = 1; i < iNumTimeNode; ++i) {
org.drip.execution.discrete.Slice s = null;
try {
s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
org.drip.execution.sensitivity.ControlNodesGreek cng = s.varianceContribution (apep);
if (null == cng) return null;
lsCNG.add (cng);
dblValue = dblValue + cng.value();
double[] adblSliceJacobian = cng.jacobian();
double[][] aadblSliceHessian = cng.hessian();
adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
aadblSliceHessian[0][0];
}
try {
return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Estimate the Optimal Adjustment Attributable to the Serial Correlation
*
* @param apep The Arithmetic Price Walk Parameters
*
* @return The Optimal Adjustment Attributable to the Serial Correlation
*/
public org.drip.execution.discrete.OptimalSerialCorrelationAdjustment[] serialCorrelationAdjustment (
final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
{
double[] adblExecutionTimeNode = _tt.executionTimeNode();
int iNumTimeNode = adblExecutionTimeNode.length;
org.drip.execution.discrete.OptimalSerialCorrelationAdjustment[] aOSCA = new
org.drip.execution.discrete.OptimalSerialCorrelationAdjustment[iNumTimeNode];
double[] adblHoldings = _tt.holdings();
try {
aOSCA[0] = new org.drip.execution.discrete.OptimalSerialCorrelationAdjustment (0., 0.);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
for (int i = 1; i < iNumTimeNode; ++i) {
org.drip.execution.discrete.Slice s = null;
try {
s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
if (null == (aOSCA[i] = s.serialCorrelationAdjustment (apep))) return null;
}
return aOSCA;
}
}