TrajectoryShortfallEstimator.java

  1. package org.drip.execution.capture;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  13.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  14.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  15.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  16.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  17.  *      and computational support.
  18.  *  
  19.  *      https://lakshmidrip.github.io/DROP/
  20.  *  
  21.  *  DROP is composed of three modules:
  22.  *  
  23.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  24.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  25.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  26.  *
  27.  *  DROP Product Core implements libraries for the following:
  28.  *  - Fixed Income Analytics
  29.  *  - Loan Analytics
  30.  *  - Transaction Cost Analytics
  31.  *
  32.  *  DROP Portfolio Core implements libraries for the following:
  33.  *  - Asset Allocation Analytics
  34.  *  - Asset Liability Management Analytics
  35.  *  - Capital Estimation Analytics
  36.  *  - Exposure Analytics
  37.  *  - Margin Analytics
  38.  *  - XVA Analytics
  39.  *
  40.  *  DROP Computational Core implements libraries for the following:
  41.  *  - Algorithm Support
  42.  *  - Computation Support
  43.  *  - Function Analysis
  44.  *  - Model Validation
  45.  *  - Numerical Analysis
  46.  *  - Numerical Optimizer
  47.  *  - Spline Builder
  48.  *  - Statistical Learning
  49.  *
  50.  *  Documentation for DROP is Spread Over:
  51.  *
  52.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  53.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  54.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  55.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  56.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  57.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  58.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  59.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  60.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  61.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  62.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  63.  *
  64.  *  Licensed under the Apache License, Version 2.0 (the "License");
  65.  *      you may not use this file except in compliance with the License.
  66.  *  
  67.  *  You may obtain a copy of the License at
  68.  *      http://www.apache.org/licenses/LICENSE-2.0
  69.  *  
  70.  *  Unless required by applicable law or agreed to in writing, software
  71.  *      distributed under the License is distributed on an "AS IS" BASIS,
  72.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  73.  *  
  74.  *  See the License for the specific language governing permissions and
  75.  *      limitations under the License.
  76.  */

  77. /**
  78.  * <i>TrajectoryShortfallEstimator</i> estimates the Price/Short Fall Distribution associated with the
  79.  * Trading Trajectory generated using the specified Evolution Parameters. The References are:
  80.  *
  81.  * <br><br>
  82.  *  <ul>
  83.  *      <li>
  84.  *          Almgren, R., and N. Chriss (1999): Value under Liquidation <i>Risk</i> <b>12 (12)</b>
  85.  *      </li>
  86.  *      <li>
  87.  *          Almgren, R., and N. Chriss (2000): Optimal Execution of Portfolio Transactions <i>Journal of
  88.  *              Risk</i> <b>3 (2)</b> 5-39
  89.  *      </li>
  90.  *      <li>
  91.  *          Bertsimas, D., and A. W. Lo (1998): Optimal Control of Execution Costs <i>Journal of Financial
  92.  *              Markets</i> <b>1</b> 1-50
  93.  *      </li>
  94.  *      <li>
  95.  *          Chan, L. K. C., and J. Lakonishak (1995): The Behavior of Stock Prices around Institutional
  96.  *              Trades <i>Journal of Finance</i> <b>50</b> 1147-1174
  97.  *      </li>
  98.  *      <li>
  99.  *          Keim, D. B., and A. Madhavan (1997): Transaction Costs and Investment Style: An Inter-exchange
  100.  *              Analysis of Institutional Equity Trades <i>Journal of Financial Economics</i> <b>46</b>
  101.  *              265-292
  102.  *      </li>
  103.  *  </ul>
  104.  *
  105.  *  <br><br>
  106.  *  <ul>
  107.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
  108.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/TransactionCostAnalyticsLibrary.md">Transaction Cost Analytics</a></li>
  109.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/README.md">Optimal Impact/Capture Based Trading Trajectories - Deterministic, Stochastic, Static, and Dynamic</a></li>
  110.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/capture/README.md">Execution Trajectory Transaction Cost Capture</a></li>
  111.  *  </ul>
  112.  *
  113.  * @author Lakshmi Krishnamurthy
  114.  */

  115. public class TrajectoryShortfallEstimator implements
  116.     org.drip.execution.sensitivity.ControlNodesGreekGenerator {
  117.     private org.drip.execution.strategy.DiscreteTradingTrajectory _tt = null;

  118.     /**
  119.      * TrajectoryShortfallEstimator Constructor
  120.      *
  121.      * @param tt The Trading Trajectory Instance
  122.      *  
  123.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  124.      */

  125.     public TrajectoryShortfallEstimator (
  126.         final org.drip.execution.strategy.DiscreteTradingTrajectory tt)
  127.         throws java.lang.Exception
  128.     {
  129.         if (null == (_tt = tt))
  130.             throw new java.lang.Exception ("TrajectoryShortfallEstimator Constructor => Invalid Inputs");
  131.     }

  132.     /**
  133.      * Retrieve the Underlying Trading Trajectory Instance
  134.      *
  135.      * @return The Underlying Trading Trajectory Instance
  136.      */

  137.     public org.drip.execution.strategy.DiscreteTradingTrajectory trajectory()
  138.     {
  139.         return _tt;
  140.     }

  141.     /**
  142.      * Generate the Detailed Cost Realization Sequence given the Specified Inputs
  143.      *
  144.      * @param dblStartingEquilibriumPrice The Starting Equilibrium Price
  145.      * @param aWS Array of the Realized Walk Random Variable Suite
  146.      * @param apep The Price Evolution Parameters
  147.      *
  148.      * @return The Detailed Cost Realization Sequence given the Specified Inputs
  149.      */

  150.     public org.drip.execution.capture.TrajectoryShortfallRealization totalCostRealizationDetail (
  151.         final double dblStartingEquilibriumPrice,
  152.         final org.drip.execution.dynamics.WalkSuite[] aWS,
  153.         final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
  154.     {
  155.         if (!org.drip.numerical.common.NumberUtil.IsValid (dblStartingEquilibriumPrice) || null == aWS)
  156.             return null;

  157.         double[] adblExecutionTimeNode = _tt.executionTimeNode();

  158.         double[] adblHoldings = _tt.holdings();

  159.         int iNumTimeNode = adblExecutionTimeNode.length;
  160.         double dblPreviousEquilibriumPrice = dblStartingEquilibriumPrice;

  161.         if (aWS.length + 1 != iNumTimeNode) return null;

  162.         java.util.List<org.drip.execution.discrete.ShortfallIncrement> lsSI = new
  163.             java.util.ArrayList<org.drip.execution.discrete.ShortfallIncrement>();

  164.         for (int i = 1; i < iNumTimeNode; ++i) {
  165.             org.drip.execution.discrete.ShortfallIncrement si = null;

  166.             try {
  167.                 si = ( new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
  168.                     adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1])).costIncrementRealization
  169.                         (dblPreviousEquilibriumPrice, aWS[i - 1], apep);
  170.             } catch (java.lang.Exception e) {
  171.                 e.printStackTrace();

  172.                 return null;
  173.             }

  174.             if (null == si) return null;

  175.             lsSI.add (si);

  176.             dblPreviousEquilibriumPrice = si.compositePriceIncrement().newEquilibriumPrice();
  177.         }

  178.         try {
  179.             return new org.drip.execution.capture.TrajectoryShortfallRealization (lsSI);
  180.         } catch (java.lang.Exception e) {
  181.             e.printStackTrace();
  182.         }

  183.         return null;
  184.     }

  185.     /**
  186.      * Generate the Detailed Total Cost Distribution for the Trading Trajectory
  187.      *
  188.      * @param apep The Price Evolution Parameters
  189.      *
  190.      * @return The Detailed Total Cost Distribution for the Trading Trajectory
  191.      */

  192.     public org.drip.execution.capture.TrajectoryShortfallAggregate totalCostDistributionDetail (
  193.         final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
  194.     {
  195.         double[] adblExecutionTimeNode = _tt.executionTimeNode();

  196.         double[] adblHoldings = _tt.holdings();

  197.         int iNumTimeNode = adblExecutionTimeNode.length;

  198.         java.util.List<org.drip.execution.discrete.ShortfallIncrementDistribution> lsSID = new
  199.             java.util.ArrayList<org.drip.execution.discrete.ShortfallIncrementDistribution>();

  200.         for (int i = 1; i < iNumTimeNode; ++i) {
  201.             org.drip.execution.discrete.Slice s = null;

  202.             try {
  203.                 s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
  204.                     adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
  205.             } catch (java.lang.Exception e) {
  206.                 e.printStackTrace();

  207.                 return null;
  208.             }

  209.             lsSID.add (s.costIncrementDistribution (apep));
  210.         }

  211.         try {
  212.             return new org.drip.execution.capture.TrajectoryShortfallAggregate (lsSID);
  213.         } catch (java.lang.Exception e) {
  214.             e.printStackTrace();
  215.         }

  216.         return null;
  217.     }

  218.     /**
  219.      * Generate the Total Cost Distribution Synopsis Distribution for the Trading Trajectory
  220.      *
  221.      * @param apep Arithmetic Price Evolution Parameters Instance
  222.      *
  223.      * @return The Total Cost Distribution Synopsis Distribution for the Trading Trajectory
  224.      */

  225.     public org.drip.measure.gaussian.R1UnivariateNormal totalCostDistributionSynopsis (
  226.         final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
  227.     {
  228.         org.drip.execution.capture.TrajectoryShortfallAggregate tsa = totalCostDistributionDetail (apep);

  229.         return null == tsa ? null : tsa.totalCostDistribution();
  230.     }

  231.     @Override public org.drip.execution.sensitivity.ControlNodesGreek permanentImpactExpectation (
  232.         final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
  233.     {
  234.         double[] adblExecutionTimeNode = _tt.executionTimeNode();

  235.         double dblValue = 0.;
  236.         int iNumTimeNode = adblExecutionTimeNode.length;
  237.         double[] adblTrajectoryJacobian = new double[iNumTimeNode];
  238.         double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];

  239.         double[] adblHoldings = _tt.holdings();

  240.         java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
  241.             java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();

  242.         for (int i = 1; i < iNumTimeNode; ++i) {
  243.             org.drip.execution.discrete.Slice s = null;

  244.             try {
  245.                 s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
  246.                     adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
  247.             } catch (java.lang.Exception e) {
  248.                 e.printStackTrace();

  249.                 return null;
  250.             }

  251.             org.drip.execution.sensitivity.ControlNodesGreek cng = s.permanentImpactExpectation (apep);

  252.             if (null == cng) return null;

  253.             lsCNG.add (cng);

  254.             dblValue = dblValue + cng.value();

  255.             double[] adblSliceJacobian = cng.jacobian();

  256.             double[][] aadblSliceHessian = cng.hessian();

  257.             adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
  258.             adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
  259.             aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
  260.             aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
  261.             aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
  262.             aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
  263.                 aadblSliceHessian[0][0];
  264.         }

  265.         try {
  266.             return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
  267.                 adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
  268.         } catch (java.lang.Exception e) {
  269.             e.printStackTrace();
  270.         }

  271.         return null;
  272.     }

  273.     @Override public org.drip.execution.sensitivity.ControlNodesGreek permanentImpactVariance (
  274.         final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
  275.     {
  276.         double[] adblExecutionTimeNode = _tt.executionTimeNode();

  277.         double dblValue = 0.;
  278.         int iNumTimeNode = adblExecutionTimeNode.length;
  279.         double[] adblTrajectoryJacobian = new double[iNumTimeNode];
  280.         double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];

  281.         double[] adblHoldings = _tt.holdings();

  282.         java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
  283.             java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();

  284.         for (int i = 1; i < iNumTimeNode; ++i) {
  285.             org.drip.execution.discrete.Slice s = null;

  286.             try {
  287.                 s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
  288.                     adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
  289.             } catch (java.lang.Exception e) {
  290.                 e.printStackTrace();

  291.                 return null;
  292.             }

  293.             org.drip.execution.sensitivity.ControlNodesGreek cng = s.permanentImpactVariance (apep);

  294.             if (null == cng) return null;

  295.             lsCNG.add (cng);

  296.             dblValue = dblValue + cng.value();

  297.             double[] adblSliceJacobian = cng.jacobian();

  298.             double[][] aadblSliceHessian = cng.hessian();

  299.             adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
  300.             adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
  301.             aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
  302.             aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
  303.             aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
  304.             aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
  305.                 aadblSliceHessian[0][0];
  306.         }

  307.         try {
  308.             return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
  309.                 adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
  310.         } catch (java.lang.Exception e) {
  311.             e.printStackTrace();
  312.         }

  313.         return null;
  314.     }

  315.     @Override public org.drip.execution.sensitivity.ControlNodesGreek temporaryImpactExpectation (
  316.         final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
  317.     {
  318.         double[] adblExecutionTimeNode = _tt.executionTimeNode();

  319.         double dblValue = 0.;
  320.         int iNumTimeNode = adblExecutionTimeNode.length;
  321.         double[] adblTrajectoryJacobian = new double[iNumTimeNode];
  322.         double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];

  323.         double[] adblHoldings = _tt.holdings();

  324.         java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
  325.             java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();

  326.         for (int i = 1; i < iNumTimeNode; ++i) {
  327.             org.drip.execution.discrete.Slice s = null;

  328.             try {
  329.                 s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
  330.                     adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
  331.             } catch (java.lang.Exception e) {
  332.                 e.printStackTrace();

  333.                 return null;
  334.             }

  335.             org.drip.execution.sensitivity.ControlNodesGreek cng = s.temporaryImpactExpectation (apep);

  336.             if (null == cng) return null;

  337.             lsCNG.add (cng);

  338.             dblValue = dblValue + cng.value();

  339.             double[] adblSliceJacobian = cng.jacobian();

  340.             double[][] aadblSliceHessian = cng.hessian();

  341.             adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
  342.             adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
  343.             aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
  344.             aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
  345.             aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
  346.             aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
  347.                 aadblSliceHessian[0][0];
  348.         }

  349.         try {
  350.             return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
  351.                 adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
  352.         } catch (java.lang.Exception e) {
  353.             e.printStackTrace();
  354.         }

  355.         return null;
  356.     }

  357.     @Override public org.drip.execution.sensitivity.ControlNodesGreek temporaryImpactVariance (
  358.         final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
  359.     {
  360.         double[] adblExecutionTimeNode = _tt.executionTimeNode();

  361.         double dblValue = 0.;
  362.         int iNumTimeNode = adblExecutionTimeNode.length;
  363.         double[] adblTrajectoryJacobian = new double[iNumTimeNode];
  364.         double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];

  365.         double[] adblHoldings = _tt.holdings();

  366.         java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
  367.             java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();

  368.         for (int i = 1; i < iNumTimeNode; ++i) {
  369.             org.drip.execution.discrete.Slice s = null;

  370.             try {
  371.                 s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
  372.                     adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
  373.             } catch (java.lang.Exception e) {
  374.                 e.printStackTrace();

  375.                 return null;
  376.             }

  377.             org.drip.execution.sensitivity.ControlNodesGreek cng = s.temporaryImpactVariance (apep);

  378.             if (null == cng) return null;

  379.             lsCNG.add (cng);

  380.             dblValue = dblValue + cng.value();

  381.             double[] adblSliceJacobian = cng.jacobian();

  382.             double[][] aadblSliceHessian = cng.hessian();

  383.             adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
  384.             adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
  385.             aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
  386.             aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
  387.             aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
  388.             aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
  389.                 aadblSliceHessian[0][0];
  390.         }

  391.         try {
  392.             return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
  393.                 adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
  394.         } catch (java.lang.Exception e) {
  395.             e.printStackTrace();
  396.         }

  397.         return null;
  398.     }

  399.     @Override public org.drip.execution.sensitivity.ControlNodesGreek marketDynamicsExpectation (
  400.         final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
  401.     {
  402.         double[] adblExecutionTimeNode = _tt.executionTimeNode();

  403.         double dblValue = 0.;
  404.         int iNumTimeNode = adblExecutionTimeNode.length;
  405.         double[] adblTrajectoryJacobian = new double[iNumTimeNode];
  406.         double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];

  407.         double[] adblHoldings = _tt.holdings();

  408.         java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
  409.             java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();

  410.         for (int i = 1; i < iNumTimeNode; ++i) {
  411.             org.drip.execution.discrete.Slice s = null;

  412.             try {
  413.                 s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
  414.                     adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
  415.             } catch (java.lang.Exception e) {
  416.                 e.printStackTrace();

  417.                 return null;
  418.             }

  419.             org.drip.execution.sensitivity.ControlNodesGreek cng = s.marketDynamicsExpectation (apep);

  420.             if (null == cng) return null;

  421.             lsCNG.add (cng);

  422.             dblValue = dblValue + cng.value();

  423.             double[] adblSliceJacobian = cng.jacobian();

  424.             double[][] aadblSliceHessian = cng.hessian();

  425.             adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
  426.             adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
  427.             aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
  428.             aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
  429.             aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
  430.             aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
  431.                 aadblSliceHessian[0][0];
  432.         }

  433.         try {
  434.             return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
  435.                 adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
  436.         } catch (java.lang.Exception e) {
  437.             e.printStackTrace();
  438.         }

  439.         return null;
  440.     }

  441.     @Override public org.drip.execution.sensitivity.ControlNodesGreek marketDynamicsVariance (
  442.         final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
  443.     {
  444.         double[] adblExecutionTimeNode = _tt.executionTimeNode();

  445.         double dblValue = 0.;
  446.         int iNumTimeNode = adblExecutionTimeNode.length;
  447.         double[] adblTrajectoryJacobian = new double[iNumTimeNode];
  448.         double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];

  449.         double[] adblHoldings = _tt.holdings();

  450.         java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
  451.             java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();

  452.         for (int i = 1; i < iNumTimeNode; ++i) {
  453.             org.drip.execution.discrete.Slice s = null;

  454.             try {
  455.                 s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
  456.                     adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
  457.             } catch (java.lang.Exception e) {
  458.                 e.printStackTrace();

  459.                 return null;
  460.             }

  461.             org.drip.execution.sensitivity.ControlNodesGreek cng = s.marketDynamicsVariance (apep);

  462.             if (null == cng) return null;

  463.             lsCNG.add (cng);

  464.             dblValue = dblValue + cng.value();

  465.             double[] adblSliceJacobian = cng.jacobian();

  466.             double[][] aadblSliceHessian = cng.hessian();

  467.             adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
  468.             adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
  469.             aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
  470.             aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
  471.             aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
  472.             aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
  473.                 aadblSliceHessian[0][0];
  474.         }

  475.         try {
  476.             return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
  477.                 adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
  478.         } catch (java.lang.Exception e) {
  479.             e.printStackTrace();
  480.         }

  481.         return null;
  482.     }

  483.     @Override public org.drip.execution.sensitivity.ControlNodesGreek expectationContribution (
  484.         final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
  485.     {
  486.         double[] adblExecutionTimeNode = _tt.executionTimeNode();

  487.         double dblValue = 0.;
  488.         int iNumTimeNode = adblExecutionTimeNode.length;
  489.         double[] adblTrajectoryJacobian = new double[iNumTimeNode];
  490.         double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];

  491.         double[] adblHoldings = _tt.holdings();

  492.         java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
  493.             java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();

  494.         for (int i = 1; i < iNumTimeNode; ++i) {
  495.             org.drip.execution.discrete.Slice s = null;

  496.             try {
  497.                 s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
  498.                     adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
  499.             } catch (java.lang.Exception e) {
  500.                 e.printStackTrace();

  501.                 return null;
  502.             }

  503.             org.drip.execution.sensitivity.ControlNodesGreek cng = s.expectationContribution (apep);

  504.             if (null == cng) return null;

  505.             lsCNG.add (cng);

  506.             dblValue = dblValue + cng.value();

  507.             double[] adblSliceJacobian = cng.jacobian();

  508.             double[][] aadblSliceHessian = cng.hessian();

  509.             adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
  510.             adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
  511.             aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
  512.             aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
  513.             aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
  514.             aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
  515.                 aadblSliceHessian[0][0];
  516.         }

  517.         try {
  518.             return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
  519.                 adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
  520.         } catch (java.lang.Exception e) {
  521.             e.printStackTrace();
  522.         }

  523.         return null;
  524.     }

  525.     @Override public org.drip.execution.sensitivity.ControlNodesGreek varianceContribution (
  526.         final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
  527.     {
  528.         double[] adblExecutionTimeNode = _tt.executionTimeNode();

  529.         double dblValue = 0.;
  530.         int iNumTimeNode = adblExecutionTimeNode.length;
  531.         double[] adblTrajectoryJacobian = new double[iNumTimeNode];
  532.         double[][] aadblTrajectoryHessian = new double[iNumTimeNode][iNumTimeNode];

  533.         double[] adblHoldings = _tt.holdings();

  534.         java.util.List<org.drip.execution.sensitivity.ControlNodesGreek> lsCNG = new
  535.             java.util.ArrayList<org.drip.execution.sensitivity.ControlNodesGreek>();

  536.         for (int i = 1; i < iNumTimeNode; ++i) {
  537.             org.drip.execution.discrete.Slice s = null;

  538.             try {
  539.                 s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
  540.                     adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
  541.             } catch (java.lang.Exception e) {
  542.                 e.printStackTrace();

  543.                 return null;
  544.             }

  545.             org.drip.execution.sensitivity.ControlNodesGreek cng = s.varianceContribution (apep);

  546.             if (null == cng) return null;

  547.             lsCNG.add (cng);

  548.             dblValue = dblValue + cng.value();

  549.             double[] adblSliceJacobian = cng.jacobian();

  550.             double[][] aadblSliceHessian = cng.hessian();

  551.             adblTrajectoryJacobian[i] = adblTrajectoryJacobian[i] + adblSliceJacobian[1];
  552.             adblTrajectoryJacobian[i - 1] = adblTrajectoryJacobian[i - 1] + adblSliceJacobian[0];
  553.             aadblTrajectoryHessian[i][i] = aadblTrajectoryHessian[i][i] + aadblSliceHessian[1][1];
  554.             aadblTrajectoryHessian[i][i - 1] = aadblTrajectoryHessian[i][i - 1] + aadblSliceHessian[1][0];
  555.             aadblTrajectoryHessian[i - 1][i] = aadblTrajectoryHessian[i - 1][i] + aadblSliceHessian[0][1];
  556.             aadblTrajectoryHessian[i - 1][i - 1] = aadblTrajectoryHessian[i - 1][i - 1] +
  557.                 aadblSliceHessian[0][0];
  558.         }

  559.         try {
  560.             return new org.drip.execution.sensitivity.TrajectoryControlNodesGreek (dblValue,
  561.                 adblTrajectoryJacobian, aadblTrajectoryHessian, lsCNG);
  562.         } catch (java.lang.Exception e) {
  563.             e.printStackTrace();
  564.         }

  565.         return null;
  566.     }

  567.     /**
  568.      * Estimate the Optimal Adjustment Attributable to the Serial Correlation
  569.      *  
  570.      * @param apep The Arithmetic Price Walk Parameters
  571.      *
  572.      * @return The Optimal Adjustment Attributable to the Serial Correlation
  573.      */

  574.     public org.drip.execution.discrete.OptimalSerialCorrelationAdjustment[] serialCorrelationAdjustment (
  575.         final org.drip.execution.dynamics.ArithmeticPriceEvolutionParameters apep)
  576.     {
  577.         double[] adblExecutionTimeNode = _tt.executionTimeNode();

  578.         int iNumTimeNode = adblExecutionTimeNode.length;
  579.         org.drip.execution.discrete.OptimalSerialCorrelationAdjustment[] aOSCA = new
  580.             org.drip.execution.discrete.OptimalSerialCorrelationAdjustment[iNumTimeNode];

  581.         double[] adblHoldings = _tt.holdings();

  582.         try {
  583.             aOSCA[0] = new org.drip.execution.discrete.OptimalSerialCorrelationAdjustment (0., 0.);
  584.         } catch (java.lang.Exception e) {
  585.             e.printStackTrace();

  586.             return null;
  587.         }

  588.         for (int i = 1; i < iNumTimeNode; ++i) {
  589.             org.drip.execution.discrete.Slice s = null;

  590.             try {
  591.                 s = new org.drip.execution.discrete.Slice (adblHoldings[i - 1], adblHoldings[i],
  592.                     adblExecutionTimeNode[i] - adblExecutionTimeNode[i - 1]);
  593.             } catch (java.lang.Exception e) {
  594.                 e.printStackTrace();

  595.                 return null;
  596.             }

  597.             if (null == (aOSCA[i] = s.serialCorrelationAdjustment (apep))) return null;
  598.         }

  599.         return aOSCA;
  600.     }
  601. }