NonDimensionalCostEvolverCorrelated.java

  1. package org.drip.execution.hjb;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  13.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  14.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  15.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  16.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  17.  *      and computational support.
  18.  *  
  19.  *      https://lakshmidrip.github.io/DROP/
  20.  *  
  21.  *  DROP is composed of three modules:
  22.  *  
  23.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  24.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  25.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  26.  *
  27.  *  DROP Product Core implements libraries for the following:
  28.  *  - Fixed Income Analytics
  29.  *  - Loan Analytics
  30.  *  - Transaction Cost Analytics
  31.  *
  32.  *  DROP Portfolio Core implements libraries for the following:
  33.  *  - Asset Allocation Analytics
  34.  *  - Asset Liability Management Analytics
  35.  *  - Capital Estimation Analytics
  36.  *  - Exposure Analytics
  37.  *  - Margin Analytics
  38.  *  - XVA Analytics
  39.  *
  40.  *  DROP Computational Core implements libraries for the following:
  41.  *  - Algorithm Support
  42.  *  - Computation Support
  43.  *  - Function Analysis
  44.  *  - Model Validation
  45.  *  - Numerical Analysis
  46.  *  - Numerical Optimizer
  47.  *  - Spline Builder
  48.  *  - Statistical Learning
  49.  *
  50.  *  Documentation for DROP is Spread Over:
  51.  *
  52.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  53.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  54.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  55.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  56.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  57.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  58.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  59.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  60.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  61.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  62.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  63.  *
  64.  *  Licensed under the Apache License, Version 2.0 (the "License");
  65.  *      you may not use this file except in compliance with the License.
  66.  *  
  67.  *  You may obtain a copy of the License at
  68.  *      http://www.apache.org/licenses/LICENSE-2.0
  69.  *  
  70.  *  Unless required by applicable law or agreed to in writing, software
  71.  *      distributed under the License is distributed on an "AS IS" BASIS,
  72.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  73.  *  
  74.  *  See the License for the specific language governing permissions and
  75.  *      limitations under the License.
  76.  */

  77. /**
  78.  * <i>NonDimensionalCostEvolverCorrelated</i> implements the Correlated HJB-based Single Step Optimal
  79.  * Trajectory Cost Step Evolver using the Correlated Coordinated Variation Version of the Stochastic
  80.  * Volatility and the Transaction Function arising from the Realization of the Market State Variable as
  81.  * described in the "Trading Time" Model. The References are:
  82.  *
  83.  * <br><br>
  84.  *  <ul>
  85.  *      <li>
  86.  *          Almgren, R. F., and N. Chriss (2000): Optimal Execution of Portfolio Transactions <i>Journal of
  87.  *              Risk</i> <b>3 (2)</b> 5-39
  88.  *      </li>
  89.  *      <li>
  90.  *          Almgren, R. F. (2009): Optimal Trading in a Dynamic Market
  91.  *              https://www.math.nyu.edu/financial_mathematics/content/02_financial/2009-2.pdf
  92.  *      </li>
  93.  *      <li>
  94.  *          Almgren, R. F. (2012): Optimal Trading with Stochastic Liquidity and Volatility <i>SIAM Journal
  95.  *          of Financial Mathematics</i> <b>3 (1)</b> 163-181
  96.  *      </li>
  97.  *      <li>
  98.  *          Geman, H., D. B. Madan, and M. Yor (2001): Time Changes for Levy Processes <i>Mathematical
  99.  *              Finance</i> <b>11 (1)</b> 79-96
  100.  *      </li>
  101.  *      <li>
  102.  *          Jones, C. M., G. Kaul, and M. L. Lipson (1994): Transactions, Volume, and Volatility <i>Review of
  103.  *              Financial Studies</i> <b>7 (4)</b> 631-651
  104.  *      </li>
  105.  *  </ul>
  106.  *
  107.  *  <br><br>
  108.  *  <ul>
  109.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
  110.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/TransactionCostAnalyticsLibrary.md">Transaction Cost Analytics</a></li>
  111.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/README.md">Optimal Impact/Capture Based Trading Trajectories - Deterministic, Stochastic, Static, and Dynamic</a></li>
  112.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/hjb/README.md">Hamilton Jacobin Bellman Based Optimal Evolution</a></li>
  113.  *  </ul>
  114.  *
  115.  * @author Lakshmi Krishnamurthy
  116.  */

  117. public class NonDimensionalCostEvolverCorrelated extends
  118.     org.drip.execution.hjb.NonDimensionalCostEvolver {

  119.     @Override protected double advance (
  120.         final org.drip.execution.hjb.NonDimensionalCost ndc,
  121.         final org.drip.execution.latent.MarketState ms,
  122.         final double[] adblMarketStateTweak,
  123.         final double dblNonDimensionalRiskAversion)
  124.         throws java.lang.Exception
  125.     {
  126.         org.drip.execution.hjb.NonDimensionalCostCorrelated ndcc =
  127.             (org.drip.execution.hjb.NonDimensionalCostCorrelated) ndc;

  128.         org.drip.measure.process.OrnsteinUhlenbeckPair oup2D =
  129.             (org.drip.measure.process.OrnsteinUhlenbeckPair) ornsteinUnlenbeckProcess();

  130.         org.drip.measure.dynamics.DiffusionEvaluatorOrnsteinUhlenbeck oup1DLiquidity = oup2D.reference();

  131.         org.drip.measure.dynamics.DiffusionEvaluatorOrnsteinUhlenbeck oup1DVolatility = oup2D.derived();

  132.         double dblVolatilityMarketState = ms.volatility() + adblMarketStateTweak[1];

  133.         double dblLiquidityMarketState = ms.liquidity() + adblMarketStateTweak[0];

  134.         double dblMu = oup1DLiquidity.relaxationTime() / oup1DVolatility.relaxationTime();

  135.         double dblVolatilityBurstiness = oup1DVolatility.burstiness();

  136.         double dblLiquidityBurstiness = oup1DLiquidity.burstiness();

  137.         double dblNonDimensionalCost = ndc.realization();

  138.         return
  139.             dblNonDimensionalRiskAversion * dblNonDimensionalRiskAversion * java.lang.Math.exp (2. *
  140.                 dblVolatilityMarketState) -
  141.             dblNonDimensionalCost * dblNonDimensionalCost * java.lang.Math.exp (-dblLiquidityMarketState) +
  142.             oup2D.correlation() + java.lang.Math.sqrt (dblMu) * dblLiquidityBurstiness *
  143.                 dblVolatilityBurstiness * ndcc.liquidityVolatilityGradient() +
  144.             0.5 * dblLiquidityBurstiness * dblLiquidityBurstiness * ndcc.liquidityJacobian() +
  145.             0.5 * dblMu * dblVolatilityBurstiness * dblVolatilityBurstiness * ndcc.volatilityJacobian() -
  146.             dblLiquidityMarketState * ndcc.liquidityGradient() -
  147.             dblMu * dblVolatilityMarketState * ndcc.volatilityGradient();
  148.     }

  149.     /**
  150.      * NonDimensionalCostEvolverCorrelated Constructor
  151.      *
  152.      * @param oup2D The 2D Ornstein-Unlenbeck Generator Process
  153.      * @param bAsymptoticEnhancedEulerCorrection Asymptotic Enhanced Euler Correction Application Flag
  154.      * @param dblAsymptoticEulerUrgencyThreshold The Asymptotic Euler Urgency Threshold
  155.      *
  156.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  157.      */

  158.     public NonDimensionalCostEvolverCorrelated (
  159.         final org.drip.measure.process.OrnsteinUhlenbeckPair oup2D,
  160.         final double dblAsymptoticEulerUrgencyThreshold,
  161.         final boolean bAsymptoticEnhancedEulerCorrection)
  162.         throws java.lang.Exception
  163.     {
  164.         super (oup2D, dblAsymptoticEulerUrgencyThreshold, bAsymptoticEnhancedEulerCorrection);
  165.     }

  166.     @Override public org.drip.execution.hjb.NonDimensionalCost evolve (
  167.         final org.drip.execution.hjb.NonDimensionalCost ndc,
  168.         final org.drip.execution.latent.MarketState ms,
  169.         final double dblNonDimensionalRiskAversion,
  170.         final double dblNonDimensionalTime,
  171.         final double dblNonDimensionalTimeIncrement)
  172.     {
  173.         if (null == ndc || !(ndc instanceof org.drip.execution.hjb.NonDimensionalCostCorrelated) || null
  174.             == ms || !org.drip.numerical.common.NumberUtil.IsValid (dblNonDimensionalRiskAversion) ||
  175.                 !org.drip.numerical.common.NumberUtil.IsValid (dblNonDimensionalTime) ||
  176.                     !org.drip.numerical.common.NumberUtil.IsValid (dblNonDimensionalTimeIncrement))
  177.             return null;

  178.         double dblLiquidityMarketState = ms.liquidity();

  179.         double dblLiquidityMarketStateIncrement = 0.01 * dblLiquidityMarketState;

  180.         double dblVolatilityMarketStateIncrement = 0.01 * ms.volatility();

  181.         try {
  182.             double dblCostIncrementMid = advance (ndc, ms, new double[] {0., 0.},
  183.                 dblNonDimensionalRiskAversion) * dblNonDimensionalTimeIncrement;

  184.             double dblCostIncrementLiquidityUp = advance (ndc, ms, new double[]
  185.                 {dblLiquidityMarketStateIncrement, 0.}, dblNonDimensionalRiskAversion) *
  186.                     dblNonDimensionalTimeIncrement;

  187.             double dblCostIncrementLiquidityDown = advance (ndc, ms, new double[]
  188.                 {-dblLiquidityMarketStateIncrement, 0.}, dblNonDimensionalRiskAversion) *
  189.                     dblNonDimensionalTimeIncrement;

  190.             double dblCostIncrementVolatilityUp = advance (ndc, ms, new double[] {0.,
  191.                 dblVolatilityMarketStateIncrement}, dblNonDimensionalRiskAversion) *
  192.                     dblNonDimensionalTimeIncrement;

  193.             double dblCostIncrementVolatilityDown = advance (ndc, ms, new double[] {0.,
  194.                 -dblVolatilityMarketStateIncrement}, dblNonDimensionalRiskAversion) *
  195.                     dblNonDimensionalTimeIncrement;

  196.             double dblCostIncrementCrossUp = advance (ndc, ms, new double[]
  197.                 {dblLiquidityMarketStateIncrement, dblVolatilityMarketStateIncrement},
  198.                     dblNonDimensionalRiskAversion) * dblNonDimensionalTimeIncrement;

  199.             double dblCostIncrementCrossDown = advance (ndc, ms, new double[]
  200.                 {-dblLiquidityMarketStateIncrement, -dblVolatilityMarketStateIncrement},
  201.                     dblNonDimensionalRiskAversion) * dblNonDimensionalTimeIncrement;

  202.             double dblNonDimensionalCost = ndc.realization() + dblCostIncrementMid;

  203.             return new org.drip.execution.hjb.NonDimensionalCostCorrelated (
  204.                 dblNonDimensionalCost,
  205.                 0.5 * (dblCostIncrementLiquidityUp - dblCostIncrementLiquidityDown) /
  206.                     dblLiquidityMarketStateIncrement,
  207.                 (dblCostIncrementLiquidityUp + dblCostIncrementLiquidityDown - 2. * dblCostIncrementMid) /
  208.                     (dblLiquidityMarketStateIncrement * dblLiquidityMarketStateIncrement),
  209.                 0.5 * (dblCostIncrementVolatilityUp - dblCostIncrementVolatilityDown) /
  210.                     dblVolatilityMarketStateIncrement,
  211.                 (dblCostIncrementVolatilityUp + dblCostIncrementVolatilityDown - 2. * dblCostIncrementMid) /
  212.                     (dblVolatilityMarketStateIncrement * dblVolatilityMarketStateIncrement),
  213.                 0.25 * (dblCostIncrementCrossUp - dblCostIncrementCrossDown) /
  214.                     (dblLiquidityMarketStateIncrement * dblVolatilityMarketStateIncrement),
  215.                 dblNonDimensionalCost * java.lang.Math.exp (-dblLiquidityMarketState));
  216.         } catch (java.lang.Exception e) {
  217.             e.printStackTrace();
  218.         }

  219.         return null;
  220.     }
  221. }