NonDimensionalCostEvolverSystemic.java

  1. package org.drip.execution.hjb;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  13.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  14.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  15.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  16.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  17.  *      and computational support.
  18.  *  
  19.  *      https://lakshmidrip.github.io/DROP/
  20.  *  
  21.  *  DROP is composed of three modules:
  22.  *  
  23.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  24.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  25.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  26.  *
  27.  *  DROP Product Core implements libraries for the following:
  28.  *  - Fixed Income Analytics
  29.  *  - Loan Analytics
  30.  *  - Transaction Cost Analytics
  31.  *
  32.  *  DROP Portfolio Core implements libraries for the following:
  33.  *  - Asset Allocation Analytics
  34.  *  - Asset Liability Management Analytics
  35.  *  - Capital Estimation Analytics
  36.  *  - Exposure Analytics
  37.  *  - Margin Analytics
  38.  *  - XVA Analytics
  39.  *
  40.  *  DROP Computational Core implements libraries for the following:
  41.  *  - Algorithm Support
  42.  *  - Computation Support
  43.  *  - Function Analysis
  44.  *  - Model Validation
  45.  *  - Numerical Analysis
  46.  *  - Numerical Optimizer
  47.  *  - Spline Builder
  48.  *  - Statistical Learning
  49.  *
  50.  *  Documentation for DROP is Spread Over:
  51.  *
  52.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  53.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  54.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  55.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  56.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  57.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  58.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  59.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  60.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  61.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  62.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  63.  *
  64.  *  Licensed under the Apache License, Version 2.0 (the "License");
  65.  *      you may not use this file except in compliance with the License.
  66.  *  
  67.  *  You may obtain a copy of the License at
  68.  *      http://www.apache.org/licenses/LICENSE-2.0
  69.  *  
  70.  *  Unless required by applicable law or agreed to in writing, software
  71.  *      distributed under the License is distributed on an "AS IS" BASIS,
  72.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  73.  *  
  74.  *  See the License for the specific language governing permissions and
  75.  *      limitations under the License.
  76.  */

  77. /**
  78.  * <i>NonDimensionalCostEvolverSystemic</i> implements the 1D HJB-based Single Step Optimal Trajectory Cost
  79.  * Step Evolver using the Systemic Coordinated Variation Version of the Stochastic Volatility and the
  80.  * Transaction Function arising from the Realization of the Market State Variable as described in the
  81.  * "Trading Time" Model. The References are:
  82.  *
  83.  * <br><br>
  84.  *  <ul>
  85.  *      <li>
  86.  *          Almgren, R. F., and N. Chriss (2000): Optimal Execution of Portfolio Transactions <i>Journal of
  87.  *              Risk</i> <b>3 (2)</b> 5-39
  88.  *      </li>
  89.  *      <li>
  90.  *          Almgren, R. F. (2009): Optimal Trading in a Dynamic Market
  91.  *              https://www.math.nyu.edu/financial_mathematics/content/02_financial/2009-2.pdf
  92.  *      </li>
  93.  *      <li>
  94.  *          Almgren, R. F. (2012): Optimal Trading with Stochastic Liquidity and Volatility <i>SIAM Journal
  95.  *          of Financial Mathematics</i> <b>3 (1)</b> 163-181
  96.  *      </li>
  97.  *      <li>
  98.  *          Geman, H., D. B. Madan, and M. Yor (2001): Time Changes for Levy Processes <i>Mathematical
  99.  *              Finance</i> <b>11 (1)</b> 79-96
  100.  *      </li>
  101.  *      <li>
  102.  *          Jones, C. M., G. Kaul, and M. L. Lipson (1994): Transactions, Volume, and Volatility <i>Review of
  103.  *              Financial Studies</i> <b>7 (4)</b> 631-651
  104.  *      </li>
  105.  *  </ul>
  106.  *
  107.  *  <br><br>
  108.  *  <ul>
  109.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
  110.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/TransactionCostAnalyticsLibrary.md">Transaction Cost Analytics</a></li>
  111.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/README.md">Optimal Impact/Capture Based Trading Trajectories - Deterministic, Stochastic, Static, and Dynamic</a></li>
  112.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/hjb/README.md">Hamilton Jacobin Bellman Based Optimal Evolution</a></li>
  113.  *  </ul>
  114.  *
  115.  * @author Lakshmi Krishnamurthy
  116.  */

  117. public class NonDimensionalCostEvolverSystemic extends org.drip.execution.hjb.NonDimensionalCostEvolver
  118. {

  119.     /**
  120.      * Construct a Standard NonDimensionalCostEvolverSystemic Instance
  121.      *
  122.      * @param ou The Underlying Ornstein-Unlenbeck Reference Process
  123.      *
  124.      * @return The Standard NonDimensionalCostEvolverSystemic Instance
  125.      */

  126.     public static final NonDimensionalCostEvolverSystemic Standard (
  127.         final org.drip.measure.process.OrnsteinUhlenbeck ou)
  128.     {
  129.         try {
  130.             return new NonDimensionalCostEvolverSystemic (ou,
  131.                 org.drip.execution.hjb.NonDimensionalCostEvolver.SINGULAR_URGENCY_THRESHOLD, true);
  132.         } catch (java.lang.Exception e) {
  133.             e.printStackTrace();
  134.         }

  135.         return null;
  136.     }

  137.     @Override protected double advance (
  138.         final org.drip.execution.hjb.NonDimensionalCost ndc,
  139.         final org.drip.execution.latent.MarketState ms,
  140.         final double[] adblMarketStateTweak,
  141.         final double dblNonDimensionalRiskAversion)
  142.         throws java.lang.Exception
  143.     {
  144.         double dblNonDimensionalCost = ndc.realization();

  145.         double dblMarketState = ms.liquidity() + adblMarketStateTweak[0];

  146.         double dblBurstiness = ornsteinUnlenbeckProcess().referenceBurstiness();

  147.         org.drip.execution.hjb.NonDimensionalCostSystemic ndcs =
  148.             (org.drip.execution.hjb.NonDimensionalCostSystemic) ndc;

  149.         return java.lang.Math.exp (-dblMarketState) * (dblNonDimensionalRiskAversion *
  150.             dblNonDimensionalRiskAversion - dblNonDimensionalCost * dblNonDimensionalCost) + 0.5 *
  151.                 dblBurstiness * dblBurstiness * ndcs.jacobian() - dblMarketState * ndcs.gradient();
  152.     }

  153.     /**
  154.      * NonDimensionalCostEvolverSystemic Constructor
  155.      *
  156.      * @param ou The Underlying Ornstein-Unlenbeck Reference Process
  157.      * @param bAsymptoticEnhancedEulerCorrection Asymptotic Enhanced Euler Correction Application Flag
  158.      * @param dblAsymptoticEulerUrgencyThreshold The Asymptotic Euler Urgency Threshold
  159.      *
  160.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  161.      */

  162.     public NonDimensionalCostEvolverSystemic (
  163.         final org.drip.measure.process.OrnsteinUhlenbeck ou,
  164.         final double dblAsymptoticEulerUrgencyThreshold,
  165.         final boolean bAsymptoticEnhancedEulerCorrection)
  166.         throws java.lang.Exception
  167.     {
  168.         super (ou, dblAsymptoticEulerUrgencyThreshold, bAsymptoticEnhancedEulerCorrection);
  169.     }

  170.     @Override public org.drip.execution.hjb.NonDimensionalCost evolve (
  171.         final org.drip.execution.hjb.NonDimensionalCost ndc,
  172.         final org.drip.execution.latent.MarketState ms,
  173.         final double dblNonDimensionalRiskAversion,
  174.         final double dblNonDimensionalTime,
  175.         final double dblNonDimensionalTimeIncrement)
  176.     {
  177.         if (null == ndc || !(ndc instanceof org.drip.execution.hjb.NonDimensionalCostSystemic) || null
  178.             == ms || !org.drip.numerical.common.NumberUtil.IsValid (dblNonDimensionalRiskAversion) ||
  179.                 !org.drip.numerical.common.NumberUtil.IsValid (dblNonDimensionalTime) ||
  180.                     !org.drip.numerical.common.NumberUtil.IsValid (dblNonDimensionalTimeIncrement))
  181.             return null;

  182.         double dblMarketState = ms.liquidity();

  183.         double dblMarketStateIncrement = 0.01 * dblMarketState;

  184.         double dblMarketStateExponentiation = java.lang.Math.exp (dblMarketState);

  185.         if (asymptoticEulerUrgencyThreshold() * dblNonDimensionalTime < 1.) {
  186.             if (!asymptoticEnhancedEulerCorrection())
  187.                 return org.drip.execution.hjb.NonDimensionalCostSystemic.LinearThreshold
  188.                     (dblMarketStateExponentiation, dblNonDimensionalTime);

  189.             double dblBurstiness = ornsteinUnlenbeckProcess().referenceBurstiness();

  190.             double dblNonDimensionalCostCross = -0.5 * dblMarketState * dblMarketStateExponentiation;

  191.             return org.drip.execution.hjb.NonDimensionalCostSystemic.EulerEnhancedLinearThreshold
  192.                 (dblMarketState, ((1. / dblNonDimensionalTimeIncrement) + 0.25 * dblBurstiness *
  193.                     dblBurstiness) * java.lang.Math.exp (dblMarketState) + dblNonDimensionalCostCross,
  194.                         dblNonDimensionalCostCross);
  195.         }

  196.         try {
  197.             double dblCostIncrementMid = advance (ndc, ms, new double[] {0.}, dblNonDimensionalRiskAversion)
  198.                 * dblNonDimensionalTimeIncrement;

  199.             double dblCostIncrementUp = advance (ndc, ms, new double[] {dblMarketStateIncrement},
  200.                 dblNonDimensionalRiskAversion) * dblNonDimensionalTimeIncrement;

  201.             double dblCostIncrementDown = advance (ndc, ms, new double[] {-1. * dblMarketStateIncrement},
  202.                 dblNonDimensionalRiskAversion) * dblNonDimensionalTimeIncrement;

  203.             double dblCost = ndc.realization() + dblCostIncrementMid;

  204.             return new org.drip.execution.hjb.NonDimensionalCostSystemic (dblCost, 0.5 *
  205.                 (dblCostIncrementUp - dblCostIncrementDown) / dblMarketStateIncrement, (dblCostIncrementUp +
  206.                     dblCostIncrementDown - 2. * dblCostIncrementMid) / (dblMarketStateIncrement *
  207.                         dblMarketStateIncrement), dblCost / dblMarketStateExponentiation);
  208.         } catch (java.lang.Exception e) {
  209.             e.printStackTrace();
  210.         }

  211.         return null;
  212.     }
  213. }