GrossProfitEstimator.java
- package org.drip.execution.principal;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>GrossProfitEstimator</i> generates the Gross Profit Distribution and the Information Ratio for a given
- * Level of Principal Discount. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Almgren, R., and N. Chriss (1999): Value under Liquidation <i>Risk</i> <b>12 (12)</b>
- * </li>
- * <li>
- * Almgren, R., and N. Chriss (2000): Optimal Execution of Portfolio Transactions <i>Journal of Risk</i>
- * <b>3 (2)</b> 5-39
- * </li>
- * <li>
- * Almgren, R. (2003): Optimal Execution with Nonlinear Impact Functions and Trading-Enhanced Risk
- * <i>Applied Mathematical Finance</i> <b>10 (1)</b> 1-18
- * </li>
- * <li>
- * Almgren, R., and N. Chriss (2003): Bidding Principles <i>Risk</i> 97-102
- * </li>
- * <li>
- * Almgren, R., C. Thum, E. Hauptmann, and H. Li (2005): Equity Market Impact <i>Risk</i> <b>18 (7)</b>
- * 57-62
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/TransactionCostAnalyticsLibrary.md">Transaction Cost Analytics</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/README.md">Optimal Impact/Capture Based Trading Trajectories - Deterministic, Stochastic, Static, and Dynamic</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/principal/README.md">Information Ratio Based Principal Trades</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class GrossProfitEstimator {
- private org.drip.execution.optimum.EfficientTradingTrajectory _ett = null;
- /**
- * GrossProfitEstimator Constructor
- *
- * @param ett The efficient Trading Trajectory Instance
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public GrossProfitEstimator (
- final org.drip.execution.optimum.EfficientTradingTrajectory ett)
- throws java.lang.Exception
- {
- if (null == (_ett = ett))
- throw new java.lang.Exception ("GrossProfitEstimator Constructor => Invalid Inputs");
- }
- /**
- * Retrieve the Optimal Efficient Trajectory
- *
- * @return The Optimal "Efficient" Trajectory
- */
- public org.drip.execution.optimum.EfficientTradingTrajectory efficientTrajectory()
- {
- return _ett;
- }
- /**
- * Generate R^1 Univariate Normal Gross Profit Distribution from the specified Principal Discount
- *
- * @param dblPrincipalDiscount The Principal Discount
- *
- * @return The R^1 Univariate Normal Gross Profit Distribution from the specified Principal Discount
- */
- public org.drip.measure.gaussian.R1UnivariateNormal principalMeasure (
- final double dblPrincipalDiscount)
- {
- try {
- return new org.drip.measure.gaussian.R1UnivariateNormal (dblPrincipalDiscount * _ett.tradeSize()
- - _ett.transactionCostExpectation(), java.lang.Math.sqrt (_ett.transactionCostVariance()));
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Break-even Principal Discount
- *
- * @return The Break-even Principal Discount
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double breakevenPrincipalDiscount()
- throws java.lang.Exception
- {
- return _ett.transactionCostExpectation() / _ett.tradeSize();
- }
- /**
- * Generate R^1 Univariate Normal Gross Profit Distribution from the specified Principal Discount
- *
- * @param dblPrincipalDiscount The Principal Discount
- *
- * @return The R^1 Univariate Normal Gross Profit Distribution from the specified Principal Discount
- */
- public org.drip.measure.gaussian.R1UnivariateNormal horizonPrincipalMeasure (
- final double dblPrincipalDiscount)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblPrincipalDiscount)) return null;
- double dblInverseHorizon = 1. / _ett.executionTime();
- try {
- return new org.drip.measure.gaussian.R1UnivariateNormal (dblPrincipalDiscount * _ett.tradeSize()
- - _ett.transactionCostExpectation() * dblInverseHorizon, java.lang.Math.sqrt
- (_ett.transactionCostVariance() * dblInverseHorizon));
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Information Ratio given the Principal Discount
- *
- * @param dblPrincipalDiscount The Principal Discount
- *
- * @return The Information Ratio
- *
- * @throws java.lang.Exception Thrown if the Inputs cannot be calculated
- */
- public double informationRatio (
- final double dblPrincipalDiscount)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblPrincipalDiscount))
- throw new java.lang.Exception ("GrossProfitEstimator::informationRatio => Invalid Inputs");
- double dblInverseHorizon = 1. / _ett.executionTime();
- return dblInverseHorizon * (dblPrincipalDiscount * _ett.tradeSize() -
- _ett.transactionCostExpectation()) / java.lang.Math.sqrt (dblInverseHorizon *
- _ett.transactionCostVariance());
- }
- }