PowerVarianceObjectiveUtility.java
- package org.drip.execution.risk;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>PowerVarianceObjectiveUtility</i> implements the Mean-Power-Variance Objective Utility Function that
- * needs to be optimized to extract the Optimal Execution Trajectory. The Exact Objective Function is of the
- * Form:
- *
- * U[x] = E[x] + lambda * (V[x] ^p)
- *
- * where p is greater than 0.
- *
- * p = 1
- *
- * is the Regular Mean-Variance, and
- *
- * p = 0.5
- *
- * is VaR Minimization (L-VaR). The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Almgren, R., and N. Chriss (1999): Value under Liquidation <i>Risk</i> <b>12 (12)</b>
- * </li>
- * <li>
- * Almgren, R., and N. Chriss (2000): Optimal Execution of Portfolio Transactions <i>Journal of
- * Risk</i> <b>3 (2)</b> 5-39
- * </li>
- * <li>
- * Almgren, R. (2003): Optimal Execution with Non-linear Impact Functions and Trading Enhanced Risk
- * <i>Applied Mathematical Finance</i> <b>10 (1)</b> 1-18
- * </li>
- * <li>
- * Artzner, P., F. Delbaen, J. M. Eber, and D. Heath (1999): Coherent Measures of Risk
- * <i>Mathematical Finance</i> <b>9</b> 203-228
- * </li>
- * <li>
- * Basak, S., and A. Shapiro (2001): Value-at-Risk Based Risk Management: Optimal Policies and Asset
- * Prices <i>Review of Financial Studies</i> <b>14</b> 371-405
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/TransactionCostAnalyticsLibrary.md">Transaction Cost Analytics</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/README.md">Optimal Impact/Capture Based Trading Trajectories - Deterministic, Stochastic, Static, and Dynamic</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/execution/risk/README.md">Optimal Execution MVO Efficient Frontier</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class PowerVarianceObjectiveUtility implements org.drip.execution.risk.ObjectiveUtility {
- private double _dblRiskAversion = java.lang.Double.NaN;
- private double _dblVarianceExponent = java.lang.Double.NaN;
- /**
- * Generate the Liquidity VaR Version of the Power Variance Utility Function
- *
- * @param dblRiskAversion The Risk Aversion Parameter
- *
- * @return The Liquidity VaR Version of the Power Variance Utility Function
- */
- public static final PowerVarianceObjectiveUtility LiquidityVaR (
- final double dblRiskAversion)
- {
- try {
- return new PowerVarianceObjectiveUtility (0.5, dblRiskAversion);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * PowerVarianceObjectiveUtility Constructor
- *
- * @param dblVarianceExponent The Variance Exponent
- * @param dblRiskAversion The Risk Aversion Parameter
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public PowerVarianceObjectiveUtility (
- final double dblVarianceExponent,
- final double dblRiskAversion)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (_dblVarianceExponent = dblVarianceExponent) || 0. >
- _dblVarianceExponent || !org.drip.numerical.common.NumberUtil.IsValid (_dblRiskAversion =
- dblRiskAversion) || 0. > _dblRiskAversion)
- throw new java.lang.Exception ("PowerVarianceObjectiveUtility Constructor => Invalid Inputs!");
- }
- /**
- * Retrieve the Risk Aversion Parameter
- *
- * @return The Risk Aversion Parameter
- */
- public double riskAversion()
- {
- return _dblRiskAversion;
- }
- /**
- * Retrieve the Variance Exponent
- *
- * @return The Variance Exponent
- */
- public double varianceExponent()
- {
- return _dblVarianceExponent;
- }
- @Override public org.drip.execution.sensitivity.ControlNodesGreek sensitivity (
- final org.drip.execution.sensitivity.TrajectoryControlNodesGreek tcngExpectation,
- final org.drip.execution.sensitivity.TrajectoryControlNodesGreek tcngVariance)
- {
- if (null == tcngExpectation || null == tcngVariance) return null;
- double[] adblVarianceJacobian = tcngVariance.innerJacobian();
- if (null == adblVarianceJacobian) return null;
- double dblVarianceValue = tcngVariance.value();
- double[][] aadblVarianceHessian = tcngVariance.innerHessian();
- double[] adblExpectationJacobian = tcngExpectation.innerJacobian();
- double[][] aadblExpectationHessian = tcngExpectation.innerHessian();
- int iNumControlNode = adblVarianceJacobian.length;
- double[] adblObjectiveJacobian = new double[iNumControlNode];
- double[][] aadblObjectiveHessian = new double[iNumControlNode][iNumControlNode];
- double dblJacobianMultiplier = _dblVarianceExponent * _dblRiskAversion * java.lang.Math.pow
- (dblVarianceValue, _dblVarianceExponent - 1.);
- double dblJacobianProductMultiplier = _dblVarianceExponent * (_dblVarianceExponent - 1.) *
- _dblRiskAversion * java.lang.Math.pow (dblVarianceValue, _dblVarianceExponent - 2.);
- for (int i = 0; i < iNumControlNode; ++i) {
- adblObjectiveJacobian[i] = adblExpectationJacobian[i] + dblJacobianMultiplier *
- adblVarianceJacobian[i];
- for (int j = 0; j < iNumControlNode; ++j)
- aadblObjectiveHessian[i][j] = aadblExpectationHessian[i][j] + dblJacobianProductMultiplier *
- adblVarianceJacobian[i] * adblVarianceJacobian[j] + dblJacobianMultiplier *
- aadblVarianceHessian[i][j];
- }
- try {
- return new org.drip.execution.sensitivity.ControlNodesGreek (tcngExpectation.value() +
- _dblRiskAversion * java.lang.Math.pow (dblVarianceValue, _dblVarianceExponent),
- adblObjectiveJacobian, aadblObjectiveHessian);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- }