CartesianComplexNumber.java
- package org.drip.function.definition;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>CartesianComplexNumber</i> implements the functionality for dealing with the Cartesian Form of Complex
- * Numbers.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/definition/README.md">Function Implementation Ancillary Support Objects</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class CartesianComplexNumber
- {
- private double _real = java.lang.Double.NaN;
- private double _imaginary = java.lang.Double.NaN;
- /**
- * Add the 2 Complex Numbers
- *
- * @param complexNumber1 The First Complex Number
- * @param complexNumber2 The Second Complex Number
- *
- * @return The Complex Number instance that is a sum of the two
- */
- public static final CartesianComplexNumber Add (
- final CartesianComplexNumber complexNumber1,
- final CartesianComplexNumber complexNumber2)
- {
- if (null == complexNumber1 || null == complexNumber2)
- {
- return null;
- }
- try
- {
- return new CartesianComplexNumber (
- complexNumber1.real() + complexNumber2.real(),
- complexNumber1.imaginary() + complexNumber2.imaginary()
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Scale the Complex Number with the factor
- *
- * @param complexNumber The Complex Number
- * @param scale The Scaling Factor
- *
- * @return The Scaled Complex Number
- */
- public static final CartesianComplexNumber Scale (
- final CartesianComplexNumber complexNumber,
- final double scale)
- {
- if (null == complexNumber || !org.drip.numerical.common.NumberUtil.IsValid (scale))
- {
- return null;
- }
- try
- {
- return new CartesianComplexNumber (
- scale * complexNumber.real(),
- scale * complexNumber.imaginary()
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Subtract the Second Complex Number from the First
- *
- * @param complexNumber1 The First Complex Number
- * @param complexNumber2 The Second Complex Number
- *
- * @return The "Difference" Complex Number
- */
- public static final CartesianComplexNumber Subtract (
- final CartesianComplexNumber complexNumber1,
- final CartesianComplexNumber complexNumber2)
- {
- if (null == complexNumber1 || null == complexNumber2)
- {
- return null;
- }
- try {
- return new CartesianComplexNumber (
- complexNumber1.real() - complexNumber2.real(),
- complexNumber1.imaginary() - complexNumber2.imaginary()
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Multiply the 2 Complex Numbers
- *
- * @param complexNumber1 The First Complex Number
- * @param complexNumber2 The Second Complex Number
- *
- * @return The Complex Number instance that is a product of the two
- */
- public static final CartesianComplexNumber Multiply (
- final CartesianComplexNumber complexNumber1,
- final CartesianComplexNumber complexNumber2)
- {
- if (null == complexNumber1 || null == complexNumber2)
- {
- return null;
- }
- double real1 = complexNumber1.real();
- double real2 = complexNumber2.real();
- double imaginary1 = complexNumber1.imaginary();
- double imaginary2 = complexNumber2.imaginary();
- try
- {
- return new CartesianComplexNumber (
- real1 * real2 - imaginary1 * imaginary2,
- real1 * imaginary2 + real2 * imaginary1
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Divide the Numerator Complex Number by the Denominator Complex Number
- *
- * @param numerator The Numerator Complex Number
- * @param denominator The Denominator Complex Number
- *
- * @return The "Divided" Complex Number
- */
- public static final CartesianComplexNumber Divide (
- final CartesianComplexNumber numerator,
- final CartesianComplexNumber denominator)
- {
- if (null == numerator || null == denominator)
- {
- return null;
- }
- double numeratorReal = numerator.real();
- double denominatorReal = denominator.real();
- double numeratorImaginary = numerator.imaginary();
- double denominatorImaginary = denominator.imaginary();
- if (0. == denominatorReal && 0. == denominatorImaginary)
- {
- return null;
- }
- double inverseDenominatorModulus = 1. / denominator.modulus();
- try
- {
- return new CartesianComplexNumber (
- (numeratorReal * denominatorReal + numeratorImaginary * denominatorImaginary) *
- inverseDenominatorModulus,
- (denominatorReal * numeratorImaginary - numeratorReal * denominatorImaginary) *
- inverseDenominatorModulus
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Square the Complex Number
- *
- * @param complexNumber The Complex Number
- *
- * @return The Squared Complex Number Instance
- */
- public static final CartesianComplexNumber Square (
- final CartesianComplexNumber complexNumber)
- {
- if (null == complexNumber)
- {
- return null;
- }
- double modulus = complexNumber.modulus();
- if (0. == modulus)
- {
- try
- {
- return new CartesianComplexNumber (
- 0.,
- 0.
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- double argument = 2. * complexNumber.argument();
- try
- {
- return new CartesianComplexNumber (
- modulus * java.lang.Math.cos (argument),
- modulus * java.lang.Math.sin (argument)
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Square Root of the Complex Number
- *
- * @param complexNumber The Complex Number
- *
- * @return The Square Root Complex Number Instance
- */
- public static final CartesianComplexNumber SquareRoot (
- final CartesianComplexNumber complexNumber)
- {
- if (null == complexNumber)
- {
- return null;
- }
- double modulus = java.lang.Math.sqrt (complexNumber.modulus());
- if (0. == modulus)
- {
- try
- {
- return new CartesianComplexNumber (
- 0.,
- 0.
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- double argument = 0.5 * complexNumber.argument();
- try
- {
- return new CartesianComplexNumber (
- modulus * java.lang.Math.cos (argument),
- modulus * java.lang.Math.sin (argument)
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Exponentiate the Complex Number
- *
- * @param complexNumber The Complex Number
- *
- * @return The Exponentiated Complex Number Instance
- */
- public static final CartesianComplexNumber Exponentiate (
- final CartesianComplexNumber complexNumber)
- {
- if (null == complexNumber)
- {
- return null;
- }
- double argument = complexNumber.imaginary();
- double modulus = java.lang.Math.exp (complexNumber.real());
- try
- {
- return new CartesianComplexNumber (
- modulus * java.lang.Math.cos (argument),
- modulus * java.lang.Math.sin (argument)
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute Logarithm of the Complex Number
- *
- * @param complexNumber The Complex Number
- *
- * @return The Complex Number Logarithm Instance
- */
- public static final CartesianComplexNumber Logarithm (
- final CartesianComplexNumber complexNumber)
- {
- if (null == complexNumber)
- {
- return null;
- }
- double modulus = complexNumber.modulus();
- if (0. == modulus)
- {
- return null;
- }
- try
- {
- return new CartesianComplexNumber (
- 0.5 * java.lang.Math.log (modulus),
- complexNumber.argument()
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Complex Number from its Polar Representation
- *
- * @param r r
- * @param theta theta
- *
- * @return Complex Number from its Polar Representation
- */
- public static final CartesianComplexNumber FromPolar (
- final double r,
- final double theta)
- {
- try
- {
- return !org.drip.numerical.common.NumberUtil.IsValid (r) ||
- !org.drip.numerical.common.NumberUtil.IsValid (theta) ? null :
- new CartesianComplexNumber (
- r * java.lang.Math.cos (theta),
- r * java.lang.Math.sin (theta)
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * CartesianComplexNumber constructor
- *
- * @param real Real Part
- * @param imaginary Imaginary Part
- *
- * @throws java.lang.Exception Thrown if the Inputs are invalid
- */
- public CartesianComplexNumber (
- final double real,
- final double imaginary)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (_real = real) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_imaginary = imaginary))
- {
- throw new java.lang.Exception ("CartesianComplexNumber Constructor => Invalid Inputs");
- }
- }
- /**
- * Retrieve the Real Part
- *
- * @return The Real Part
- */
- public double real()
- {
- return _real;
- }
- /**
- * Retrieve the Imaginary Part
- *
- * @return The Imaginary Part
- */
- public double imaginary()
- {
- return _imaginary;
- }
- /**
- * Retrieve the Modulus
- *
- * @return The Modulus
- */
- public double modulus()
- {
- return _real * _real + _imaginary * _imaginary;
- }
- /**
- * Retrieve the Absolute Value
- *
- * @return The Absolute Value
- */
- public double abs()
- {
- return java.lang.Math.sqrt (modulus());
- }
- /**
- * Retrieve the Argument
- *
- * @return The Argument
- */
- public double argument()
- {
- return 0. == _real && 0. == _imaginary ? 0. : java.lang.Math.atan (_imaginary / _real);
- }
- /**
- * Display the Real/Imaginary Contents
- *
- * @return The Real/Imaginary Contents
- */
- public java.lang.String display()
- {
- return "\t[" + _real + ", " + _imaginary + "]";
- }
- }