RdToR1.java
package org.drip.function.definition;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2020 Lakshmi Krishnamurthy
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
* Copyright (C) 2015 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
* and computational support.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
*
* DROP Product Core implements libraries for the following:
* - Fixed Income Analytics
* - Loan Analytics
* - Transaction Cost Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Asset Liability Management Analytics
* - Capital Estimation Analytics
* - Exposure Analytics
* - Margin Analytics
* - XVA Analytics
*
* DROP Computational Core implements libraries for the following:
* - Algorithm Support
* - Computation Support
* - Function Analysis
* - Model Validation
* - Numerical Analysis
* - Numerical Optimizer
* - Spline Builder
* - Statistical Learning
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>RdToR1</i> provides the evaluation of the R<sup>d</sup> To R<sup>1</sup> objective function and its
* derivatives for a specified set of R<sup>d</sup> variates. Default implementation of the derivatives are
* for non-analytical lack box objective functions.
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/definition/README.md">Function Implementation Ancillary Support Objects</a></li>
* </ul>
*
* @author Lakshmi Krishnamurthy
*/
public abstract class RdToR1 {
private static final int EXTREMA_SAMPLING = 10000;
private static final int QUADRATURE_SAMPLING = 10000;
protected static final int DIMENSION_NOT_FIXED = -1;
protected org.drip.numerical.differentiation.DerivativeControl _dc = null;
/**
* Validate the Input Double Array
*
* @param adblVariate The Input Double Array
*
* @return The Input Double Array consists of valid Values
*/
public static final boolean ValidateInput (
final double[] adblVariate)
{
if (null == adblVariate) return false;
int iNumVariate = adblVariate.length;
if (0 == iNumVariate) return false;
for (int i = 0; i < iNumVariate; ++i) {
if (!org.drip.numerical.common.NumberUtil.IsValid (adblVariate[i])) return false;
}
return true;
}
protected RdToR1 (
final org.drip.numerical.differentiation.DerivativeControl dc)
{
if (null == (_dc = dc)) _dc = new org.drip.numerical.differentiation.DerivativeControl();
}
/**
* Retrieve the Dimension of the Input Variate
*
* @return The Dimension of the Input Variate
*/
public abstract int dimension();
/**
* Evaluate for the given Input Variates
*
* @param adblVariate Array of Input Variates
*
* @return The Calculated Value
*
* @throws java.lang.Exception Thrown if the Evaluation cannot be done
*/
public abstract double evaluate (
final double[] adblVariate)
throws java.lang.Exception;
/**
* Calculate the Differential
*
* @param adblVariate Variate Array at which the derivative is to be calculated
* @param iVariateIndex Index of the Variate whose Derivative is to be computed
* @param iOrder Order of the derivative to be computed
*
* @return The Derivative
*/
public org.drip.numerical.differentiation.Differential differential (
final double[] adblVariate,
final int iVariateIndex,
final int iOrder)
{
if (!org.drip.numerical.common.NumberUtil.IsValid (adblVariate) || 0 >= iOrder) return null;
double dblDerivative = 0.;
int iNumVariate = adblVariate.length;
double dblOrderedVariateInfinitesimal = 1.;
double dblVariateInfinitesimal = java.lang.Double.NaN;
if (iNumVariate <= iVariateIndex) return null;
try {
dblVariateInfinitesimal = _dc.getVariateInfinitesimal (adblVariate[iVariateIndex]);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
for (int i = 0; i <= iOrder; ++i) {
if (0 != i) dblOrderedVariateInfinitesimal *= (2. * dblVariateInfinitesimal);
double[] adblVariateIncremental = new double[iNumVariate];
for (int j = 0; j < iNumVariate; ++j)
adblVariateIncremental[j] = j == iVariateIndex ? adblVariate[j] + dblVariateInfinitesimal *
(iOrder - 2. * i) : adblVariate[j];
try {
dblDerivative += (i % 2 == 0 ? 1 : -1) * org.drip.numerical.common.NumberUtil.NCK (iOrder, i) *
evaluate (adblVariateIncremental);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
}
try {
return new org.drip.numerical.differentiation.Differential (dblOrderedVariateInfinitesimal, dblDerivative);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Calculate the derivative as a double
*
* @param adblVariate Variate Array at which the derivative is to be calculated
* @param iVariateIndex Index of the Variate whose Derivative is to be computed
* @param iOrder Order of the derivative to be computed
*
* @return The Derivative
*
* @throws java.lang.Exception Thrown if the Derivative cannot be calculated
*/
public double derivative (
final double[] adblVariate,
final int iVariateIndex,
final int iOrder)
throws java.lang.Exception
{
return differential (adblVariate, iVariateIndex, iOrder).calcSlope (true);
}
/**
* Evaluate the Jacobian for the given Input Variates
*
* @param adblVariate Array of Input Variates
*
* @return The Jacobian Array
*/
public double[] jacobian (
final double[] adblVariate)
{
if (null == adblVariate) return null;
int iNumVariate = adblVariate.length;
double[] adblJacobian = new double[iNumVariate];
if (0 == iNumVariate) return null;
for (int i = 0; i < iNumVariate; ++i) {
try {
adblJacobian[i] = derivative (adblVariate, i, 1);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
}
return adblJacobian;
}
/**
* Construct an Instance of the Unit Gradient Vector at the given Input Variates
*
* @param adblVariate Array of Input Variates
*
* @return Instance of the Unit Gradient Vector Array
*/
public org.drip.function.definition.UnitVector gradient (
final double[] adblVariate)
{
return org.drip.function.definition.UnitVector.Standard (jacobian (adblVariate));
}
/**
* Evaluate The Hessian for the given Input Variates
*
* @param adblVariate Array of Input Variates
*
* @return The Hessian Matrix
*/
public double[][] hessian (
final double[] adblVariate)
{
if (null == adblVariate) return null;
final int iNumVariate = adblVariate.length;
double[][] adblHessian = new double[iNumVariate][iNumVariate];
if (0 == iNumVariate) return null;
for (int i = 0; i < iNumVariate; ++i) {
final int iVariateIndex = i;
org.drip.function.definition.RdToR1 gradientRdToR1 = new org.drip.function.definition.RdToR1
(null) {
@Override public int dimension()
{
return iNumVariate;
}
@Override public double evaluate (
final double[] adblVariate)
throws java.lang.Exception
{
return derivative (adblVariate, iVariateIndex, 1);
}
};
for (int j = 0; j < iNumVariate; ++j) {
try {
adblHessian[i][j] = gradientRdToR1.derivative (adblVariate, j, 1);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
}
}
return adblHessian;
}
/**
* Integrate over the given Input Range Using Uniform Monte-Carlo
*
* @param adblLeftEdge Array of Input Left Edge
* @param adblRightEdge Array of Input Right Edge
*
* @return The Result of the Integration over the specified Range
*
* @throws java.lang.Exception Thrown if the Integration cannot be done
*/
public double integrate (
final double[] adblLeftEdge,
final double[] adblRightEdge)
throws java.lang.Exception
{
if (!org.drip.numerical.common.NumberUtil.IsValid (adblLeftEdge) ||
!org.drip.numerical.common.NumberUtil.IsValid (adblRightEdge))
throw new java.lang.Exception ("RdToR1::integrate => Invalid Inputs");
double dblIntegrand = 0.;
int iNumVariate = adblLeftEdge.length;
double[] adblVariate = new double[iNumVariate];
double[] adblVariateWidth = new double[iNumVariate];
if (adblRightEdge.length != iNumVariate)
throw new java.lang.Exception ("RdToR1::integrate => Invalid Inputs");
for (int j = 0; j < iNumVariate; ++j)
adblVariateWidth[j] = adblRightEdge[j] - adblLeftEdge[j];
for (int i = 0; i < QUADRATURE_SAMPLING; ++i) {
for (int j = 0; j < iNumVariate; ++j)
adblVariate[j] = adblLeftEdge[j] + java.lang.Math.random() * adblVariateWidth[j];
dblIntegrand += evaluate (adblVariate);
}
for (int j = 0; j < iNumVariate; ++j)
dblIntegrand = dblIntegrand * adblVariateWidth[j];
return dblIntegrand / QUADRATURE_SAMPLING;
}
/**
* Compute the Maximum VOP within the Variate Array Range Using Uniform Monte-Carlo
*
* @param adblVariateLeft The Range Left End Array
* @param adblVariateRight The Range Right End Array
*
* @return The Maximum VOP
*/
public org.drip.function.definition.VariateOutputPair maxima (
final double[] adblVariateLeft,
final double[] adblVariateRight)
{
if (!org.drip.numerical.common.NumberUtil.IsValid (adblVariateLeft) ||
!org.drip.numerical.common.NumberUtil.IsValid (adblVariateRight))
return null;
double dblValue = java.lang.Double.NaN;
double dblMaxima = java.lang.Double.NaN;
int iNumVariate = adblVariateLeft.length;
double[] adblVariate = new double[iNumVariate];
double[] adblVariateWidth = new double[iNumVariate];
double[] adblMaximaVariate = new double[iNumVariate];
if (adblVariateRight.length != iNumVariate) return null;
for (int j = 0; j < iNumVariate; ++j)
adblVariateWidth[j] = adblVariateRight[j] - adblVariateLeft[j];
for (int i = 0; i < EXTREMA_SAMPLING; ++i) {
for (int j = 0; j < iNumVariate; ++j)
adblVariate[j] = adblVariateLeft[j] + java.lang.Math.random() * adblVariateWidth[j];
try {
dblValue = evaluate (adblVariate);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
if (!org.drip.numerical.common.NumberUtil.IsValid (dblMaxima)) {
dblMaxima = dblValue;
for (int j = 0; j < iNumVariate; ++j)
adblMaximaVariate[j] = adblVariate[j];
} else {
if (dblMaxima < dblValue) {
dblMaxima = dblValue;
for (int j = 0; j < iNumVariate; ++j)
adblMaximaVariate[j] = adblVariate[j];
}
}
}
try {
return new org.drip.function.definition.VariateOutputPair (adblMaximaVariate, new double[]
{dblMaxima});
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Compute the Minimum VOP within the Variate Array Range Using Uniform Monte-Carlo
*
* @param adblVariateLeft The Range Left End Array
* @param adblVariateRight The Range Right End Array
*
* @return The Minimum VOP
*/
public org.drip.function.definition.VariateOutputPair minima (
final double[] adblVariateLeft,
final double[] adblVariateRight)
{
if (!org.drip.numerical.common.NumberUtil.IsValid (adblVariateLeft) ||
!org.drip.numerical.common.NumberUtil.IsValid (adblVariateRight))
return null;
double dblValue = java.lang.Double.NaN;
double dblMinima = java.lang.Double.NaN;
int iNumVariate = adblVariateLeft.length;
double[] adblVariate = new double[iNumVariate];
double[] adblVariateWidth = new double[iNumVariate];
double[] adblMinimaVariate = new double[iNumVariate];
if (adblVariateRight.length != iNumVariate) return null;
for (int j = 0; j < iNumVariate; ++j)
adblVariateWidth[j] = adblVariateRight[j] - adblVariateLeft[j];
for (int i = 0; i < EXTREMA_SAMPLING; ++i) {
for (int j = 0; j < iNumVariate; ++j)
adblVariate[j] = adblVariateLeft[j] + java.lang.Math.random() * adblVariateWidth[j];
try {
dblValue = evaluate (adblVariate);
} catch (java.lang.Exception e) {
e.printStackTrace();
return null;
}
if (!org.drip.numerical.common.NumberUtil.IsValid (dblMinima)) {
dblMinima = dblValue;
for (int j = 0; j < iNumVariate; ++j)
adblMinimaVariate[j] = adblVariate[j];
} else {
if (dblMinima > dblValue) {
dblMinima = dblValue;
for (int j = 0; j < iNumVariate; ++j)
adblMinimaVariate[j] = adblVariate[j];
}
}
}
try {
return new org.drip.function.definition.VariateOutputPair (adblMinimaVariate, new double[]
{dblMinima});
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Compute the Modulus of the Gradient at the Specified Variate location
*
* @param adblVariate The Variate Array location
*
* @return The Modulus of the Gradient at the Specified Variate location
*
* @throws java.lang.Exception Thrown if the Inputs are Invalid
*/
public double gradientModulus (
final double[] adblVariate)
throws java.lang.Exception
{
double[] adblJacobian = jacobian (adblVariate);
if (null == adblJacobian)
throw new java.lang.Exception ("RdToR1::gradientModulus => Invalid Inputs!");
double dblGradientModulus = 0.;
int iNumVariate = adblVariate.length;
for (int i = 0; i < iNumVariate; ++i)
dblGradientModulus += adblJacobian[i] * adblJacobian[i];
return dblGradientModulus;
}
/**
* Generate the Gradient Modulus Function
*
* @return The Gradient Modulus Function
*/
public org.drip.function.definition.RdToR1 gradientModulusFunction()
{
org.drip.function.definition.RdToR1 gradientModulusRdToR1 = new org.drip.function.definition.RdToR1
(null) {
@Override public int dimension()
{
return dimension();
}
@Override public double evaluate (
final double[] adblVariate)
throws java.lang.Exception
{
return gradientModulus (adblVariate);
}
@Override public double[] jacobian (
final double[] adblVariate)
{
double[] adblParentJacobian = jacobian (adblVariate);
double[][] adblParentHessian = hessian (adblVariate);
if (null == adblParentJacobian || null == adblParentHessian) return null;
int iDimension = adblParentJacobian.length;
double[] adblGradientModulusJacobian = new double[iDimension];
for (int k = 0; k < iDimension; ++k) {
adblGradientModulusJacobian[k] = 0.;
for (int i = 0; i < iDimension; ++i)
adblGradientModulusJacobian[k] += adblParentJacobian[i] * adblParentHessian[i][k];
adblGradientModulusJacobian[k] *= 2.;
}
return adblGradientModulusJacobian;
}
};
return gradientModulusRdToR1;
}
}