RdToR1.java
- package org.drip.function.definition;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>RdToR1</i> provides the evaluation of the R<sup>d</sup> To R<sup>1</sup> objective function and its
- * derivatives for a specified set of R<sup>d</sup> variates. Default implementation of the derivatives are
- * for non-analytical lack box objective functions.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/definition/README.md">Function Implementation Ancillary Support Objects</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public abstract class RdToR1 {
- private static final int EXTREMA_SAMPLING = 10000;
- private static final int QUADRATURE_SAMPLING = 10000;
- protected static final int DIMENSION_NOT_FIXED = -1;
- protected org.drip.numerical.differentiation.DerivativeControl _dc = null;
- /**
- * Validate the Input Double Array
- *
- * @param adblVariate The Input Double Array
- *
- * @return The Input Double Array consists of valid Values
- */
- public static final boolean ValidateInput (
- final double[] adblVariate)
- {
- if (null == adblVariate) return false;
- int iNumVariate = adblVariate.length;
- if (0 == iNumVariate) return false;
- for (int i = 0; i < iNumVariate; ++i) {
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblVariate[i])) return false;
- }
- return true;
- }
- protected RdToR1 (
- final org.drip.numerical.differentiation.DerivativeControl dc)
- {
- if (null == (_dc = dc)) _dc = new org.drip.numerical.differentiation.DerivativeControl();
- }
- /**
- * Retrieve the Dimension of the Input Variate
- *
- * @return The Dimension of the Input Variate
- */
- public abstract int dimension();
- /**
- * Evaluate for the given Input Variates
- *
- * @param adblVariate Array of Input Variates
- *
- * @return The Calculated Value
- *
- * @throws java.lang.Exception Thrown if the Evaluation cannot be done
- */
- public abstract double evaluate (
- final double[] adblVariate)
- throws java.lang.Exception;
- /**
- * Calculate the Differential
- *
- * @param adblVariate Variate Array at which the derivative is to be calculated
- * @param iVariateIndex Index of the Variate whose Derivative is to be computed
- * @param iOrder Order of the derivative to be computed
- *
- * @return The Derivative
- */
- public org.drip.numerical.differentiation.Differential differential (
- final double[] adblVariate,
- final int iVariateIndex,
- final int iOrder)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblVariate) || 0 >= iOrder) return null;
- double dblDerivative = 0.;
- int iNumVariate = adblVariate.length;
- double dblOrderedVariateInfinitesimal = 1.;
- double dblVariateInfinitesimal = java.lang.Double.NaN;
- if (iNumVariate <= iVariateIndex) return null;
- try {
- dblVariateInfinitesimal = _dc.getVariateInfinitesimal (adblVariate[iVariateIndex]);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- for (int i = 0; i <= iOrder; ++i) {
- if (0 != i) dblOrderedVariateInfinitesimal *= (2. * dblVariateInfinitesimal);
- double[] adblVariateIncremental = new double[iNumVariate];
- for (int j = 0; j < iNumVariate; ++j)
- adblVariateIncremental[j] = j == iVariateIndex ? adblVariate[j] + dblVariateInfinitesimal *
- (iOrder - 2. * i) : adblVariate[j];
- try {
- dblDerivative += (i % 2 == 0 ? 1 : -1) * org.drip.numerical.common.NumberUtil.NCK (iOrder, i) *
- evaluate (adblVariateIncremental);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- }
- try {
- return new org.drip.numerical.differentiation.Differential (dblOrderedVariateInfinitesimal, dblDerivative);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Calculate the derivative as a double
- *
- * @param adblVariate Variate Array at which the derivative is to be calculated
- * @param iVariateIndex Index of the Variate whose Derivative is to be computed
- * @param iOrder Order of the derivative to be computed
- *
- * @return The Derivative
- *
- * @throws java.lang.Exception Thrown if the Derivative cannot be calculated
- */
- public double derivative (
- final double[] adblVariate,
- final int iVariateIndex,
- final int iOrder)
- throws java.lang.Exception
- {
- return differential (adblVariate, iVariateIndex, iOrder).calcSlope (true);
- }
- /**
- * Evaluate the Jacobian for the given Input Variates
- *
- * @param adblVariate Array of Input Variates
- *
- * @return The Jacobian Array
- */
- public double[] jacobian (
- final double[] adblVariate)
- {
- if (null == adblVariate) return null;
- int iNumVariate = adblVariate.length;
- double[] adblJacobian = new double[iNumVariate];
- if (0 == iNumVariate) return null;
- for (int i = 0; i < iNumVariate; ++i) {
- try {
- adblJacobian[i] = derivative (adblVariate, i, 1);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- }
- return adblJacobian;
- }
- /**
- * Construct an Instance of the Unit Gradient Vector at the given Input Variates
- *
- * @param adblVariate Array of Input Variates
- *
- * @return Instance of the Unit Gradient Vector Array
- */
- public org.drip.function.definition.UnitVector gradient (
- final double[] adblVariate)
- {
- return org.drip.function.definition.UnitVector.Standard (jacobian (adblVariate));
- }
- /**
- * Evaluate The Hessian for the given Input Variates
- *
- * @param adblVariate Array of Input Variates
- *
- * @return The Hessian Matrix
- */
- public double[][] hessian (
- final double[] adblVariate)
- {
- if (null == adblVariate) return null;
- final int iNumVariate = adblVariate.length;
- double[][] adblHessian = new double[iNumVariate][iNumVariate];
- if (0 == iNumVariate) return null;
- for (int i = 0; i < iNumVariate; ++i) {
- final int iVariateIndex = i;
- org.drip.function.definition.RdToR1 gradientRdToR1 = new org.drip.function.definition.RdToR1
- (null) {
- @Override public int dimension()
- {
- return iNumVariate;
- }
- @Override public double evaluate (
- final double[] adblVariate)
- throws java.lang.Exception
- {
- return derivative (adblVariate, iVariateIndex, 1);
- }
- };
- for (int j = 0; j < iNumVariate; ++j) {
- try {
- adblHessian[i][j] = gradientRdToR1.derivative (adblVariate, j, 1);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- }
- }
- return adblHessian;
- }
- /**
- * Integrate over the given Input Range Using Uniform Monte-Carlo
- *
- * @param adblLeftEdge Array of Input Left Edge
- * @param adblRightEdge Array of Input Right Edge
- *
- * @return The Result of the Integration over the specified Range
- *
- * @throws java.lang.Exception Thrown if the Integration cannot be done
- */
- public double integrate (
- final double[] adblLeftEdge,
- final double[] adblRightEdge)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblLeftEdge) ||
- !org.drip.numerical.common.NumberUtil.IsValid (adblRightEdge))
- throw new java.lang.Exception ("RdToR1::integrate => Invalid Inputs");
- double dblIntegrand = 0.;
- int iNumVariate = adblLeftEdge.length;
- double[] adblVariate = new double[iNumVariate];
- double[] adblVariateWidth = new double[iNumVariate];
- if (adblRightEdge.length != iNumVariate)
- throw new java.lang.Exception ("RdToR1::integrate => Invalid Inputs");
- for (int j = 0; j < iNumVariate; ++j)
- adblVariateWidth[j] = adblRightEdge[j] - adblLeftEdge[j];
- for (int i = 0; i < QUADRATURE_SAMPLING; ++i) {
- for (int j = 0; j < iNumVariate; ++j)
- adblVariate[j] = adblLeftEdge[j] + java.lang.Math.random() * adblVariateWidth[j];
- dblIntegrand += evaluate (adblVariate);
- }
- for (int j = 0; j < iNumVariate; ++j)
- dblIntegrand = dblIntegrand * adblVariateWidth[j];
- return dblIntegrand / QUADRATURE_SAMPLING;
- }
- /**
- * Compute the Maximum VOP within the Variate Array Range Using Uniform Monte-Carlo
- *
- * @param adblVariateLeft The Range Left End Array
- * @param adblVariateRight The Range Right End Array
- *
- * @return The Maximum VOP
- */
- public org.drip.function.definition.VariateOutputPair maxima (
- final double[] adblVariateLeft,
- final double[] adblVariateRight)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblVariateLeft) ||
- !org.drip.numerical.common.NumberUtil.IsValid (adblVariateRight))
- return null;
- double dblValue = java.lang.Double.NaN;
- double dblMaxima = java.lang.Double.NaN;
- int iNumVariate = adblVariateLeft.length;
- double[] adblVariate = new double[iNumVariate];
- double[] adblVariateWidth = new double[iNumVariate];
- double[] adblMaximaVariate = new double[iNumVariate];
- if (adblVariateRight.length != iNumVariate) return null;
- for (int j = 0; j < iNumVariate; ++j)
- adblVariateWidth[j] = adblVariateRight[j] - adblVariateLeft[j];
- for (int i = 0; i < EXTREMA_SAMPLING; ++i) {
- for (int j = 0; j < iNumVariate; ++j)
- adblVariate[j] = adblVariateLeft[j] + java.lang.Math.random() * adblVariateWidth[j];
- try {
- dblValue = evaluate (adblVariate);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblMaxima)) {
- dblMaxima = dblValue;
- for (int j = 0; j < iNumVariate; ++j)
- adblMaximaVariate[j] = adblVariate[j];
- } else {
- if (dblMaxima < dblValue) {
- dblMaxima = dblValue;
- for (int j = 0; j < iNumVariate; ++j)
- adblMaximaVariate[j] = adblVariate[j];
- }
- }
- }
- try {
- return new org.drip.function.definition.VariateOutputPair (adblMaximaVariate, new double[]
- {dblMaxima});
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Minimum VOP within the Variate Array Range Using Uniform Monte-Carlo
- *
- * @param adblVariateLeft The Range Left End Array
- * @param adblVariateRight The Range Right End Array
- *
- * @return The Minimum VOP
- */
- public org.drip.function.definition.VariateOutputPair minima (
- final double[] adblVariateLeft,
- final double[] adblVariateRight)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblVariateLeft) ||
- !org.drip.numerical.common.NumberUtil.IsValid (adblVariateRight))
- return null;
- double dblValue = java.lang.Double.NaN;
- double dblMinima = java.lang.Double.NaN;
- int iNumVariate = adblVariateLeft.length;
- double[] adblVariate = new double[iNumVariate];
- double[] adblVariateWidth = new double[iNumVariate];
- double[] adblMinimaVariate = new double[iNumVariate];
- if (adblVariateRight.length != iNumVariate) return null;
- for (int j = 0; j < iNumVariate; ++j)
- adblVariateWidth[j] = adblVariateRight[j] - adblVariateLeft[j];
- for (int i = 0; i < EXTREMA_SAMPLING; ++i) {
- for (int j = 0; j < iNumVariate; ++j)
- adblVariate[j] = adblVariateLeft[j] + java.lang.Math.random() * adblVariateWidth[j];
- try {
- dblValue = evaluate (adblVariate);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblMinima)) {
- dblMinima = dblValue;
- for (int j = 0; j < iNumVariate; ++j)
- adblMinimaVariate[j] = adblVariate[j];
- } else {
- if (dblMinima > dblValue) {
- dblMinima = dblValue;
- for (int j = 0; j < iNumVariate; ++j)
- adblMinimaVariate[j] = adblVariate[j];
- }
- }
- }
- try {
- return new org.drip.function.definition.VariateOutputPair (adblMinimaVariate, new double[]
- {dblMinima});
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Modulus of the Gradient at the Specified Variate location
- *
- * @param adblVariate The Variate Array location
- *
- * @return The Modulus of the Gradient at the Specified Variate location
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double gradientModulus (
- final double[] adblVariate)
- throws java.lang.Exception
- {
- double[] adblJacobian = jacobian (adblVariate);
- if (null == adblJacobian)
- throw new java.lang.Exception ("RdToR1::gradientModulus => Invalid Inputs!");
- double dblGradientModulus = 0.;
- int iNumVariate = adblVariate.length;
- for (int i = 0; i < iNumVariate; ++i)
- dblGradientModulus += adblJacobian[i] * adblJacobian[i];
- return dblGradientModulus;
- }
- /**
- * Generate the Gradient Modulus Function
- *
- * @return The Gradient Modulus Function
- */
- public org.drip.function.definition.RdToR1 gradientModulusFunction()
- {
- org.drip.function.definition.RdToR1 gradientModulusRdToR1 = new org.drip.function.definition.RdToR1
- (null) {
- @Override public int dimension()
- {
- return dimension();
- }
- @Override public double evaluate (
- final double[] adblVariate)
- throws java.lang.Exception
- {
- return gradientModulus (adblVariate);
- }
- @Override public double[] jacobian (
- final double[] adblVariate)
- {
- double[] adblParentJacobian = jacobian (adblVariate);
- double[][] adblParentHessian = hessian (adblVariate);
- if (null == adblParentJacobian || null == adblParentHessian) return null;
- int iDimension = adblParentJacobian.length;
- double[] adblGradientModulusJacobian = new double[iDimension];
- for (int k = 0; k < iDimension; ++k) {
- adblGradientModulusJacobian[k] = 0.;
- for (int i = 0; i < iDimension; ++i)
- adblGradientModulusJacobian[k] += adblParentJacobian[i] * adblParentHessian[i][k];
- adblGradientModulusJacobian[k] *= 2.;
- }
- return adblGradientModulusJacobian;
- }
- };
- return gradientModulusRdToR1;
- }
- }