RdToRd.java
- package org.drip.function.definition;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>RdToRd</i> provides the evaluation of the R<sup>d</sup> To R<sup>d</sup> objective function and its
- * derivatives for a specified set of R<sup>d</sup> variates. Default implementation of the derivatives are
- * for non-analytical black box objective functions.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/definition/README.md">Function Implementation Ancillary Support Objects</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public abstract class RdToRd {
- private static final int QUADRATURE_SAMPLING = 10000;
- protected org.drip.numerical.differentiation.DerivativeControl _dc = null;
- protected RdToRd (
- final org.drip.numerical.differentiation.DerivativeControl dc)
- {
- if (null == (_dc = dc)) _dc = new org.drip.numerical.differentiation.DerivativeControl();
- }
- /**
- * Evaluate for the given Input R^d Variates
- *
- * @param adblVariate Array of Input R^d Variates
- *
- * @return The Output R^d Variates
- */
- public abstract double[] evaluate (
- final double[] adblVariate);
- /**
- * Calculate the Array of Differentials
- *
- * @param adblVariate Variate Array at which the derivative is to be calculated
- * @param iVariateIndex Index of the Variate whose Derivative is to be computed
- * @param iOrder Order of the derivative to be computed
- *
- * @return The Array of Differentials
- */
- public org.drip.numerical.differentiation.Differential[] differential (
- final double[] adblVariate,
- final int iVariateIndex,
- final int iOrder)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblVariate) || 0 >= iOrder) return null;
- int iOutputDimension = -1;
- double[] adblDerivative = null;
- int iNumVariate = adblVariate.length;
- double dblOrderedVariateInfinitesimal = 1.;
- double dblVariateInfinitesimal = java.lang.Double.NaN;
- if (iNumVariate <= iVariateIndex) return null;
- try {
- dblVariateInfinitesimal = _dc.getVariateInfinitesimal (adblVariate[iVariateIndex]);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- for (int i = 0; i <= iOrder; ++i) {
- if (0 != i) dblOrderedVariateInfinitesimal *= (2. * dblVariateInfinitesimal);
- double[] adblVariateIncremental = new double[iNumVariate];
- for (int j = 0; i < iNumVariate; ++j)
- adblVariateIncremental[j] = j == iVariateIndex ? adblVariate[j] + dblVariateInfinitesimal *
- (iOrder - 2. * i) : adblVariate[j];
- double[] adblValue = evaluate (adblVariateIncremental);
- if (null == adblValue || 0 == (iOutputDimension = adblValue.length)) return null;
- if (null == adblDerivative) {
- adblDerivative = new double[iOutputDimension];
- for (int j = 0; j < iOutputDimension; ++j)
- adblDerivative[j] = 0.;
- }
- try {
- for (int j = 0; j < iOutputDimension; ++j)
- adblDerivative[j] += (i % 2 == 0 ? 1 : -1) * org.drip.numerical.common.NumberUtil.NCK
- (iOrder, i) * adblValue[j];
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- }
- org.drip.numerical.differentiation.Differential[] aDiff = new
- org.drip.numerical.differentiation.Differential[iOutputDimension];
- try {
- for (int j = 0; j < iOutputDimension; ++j)
- aDiff[j] = new org.drip.numerical.differentiation.Differential (dblOrderedVariateInfinitesimal,
- adblDerivative[j]);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- return aDiff;
- }
- /**
- * Calculate the Derivative Array as a double
- *
- * @param adblVariate Variate Array at which the derivative is to be calculated
- * @param iVariateIndex Index of the Variate whose Derivative is to be computed
- * @param iOrder Order of the derivative to be computed
- *
- * @return The Derivative Array
- */
- public double[] derivative (
- final double[] adblVariate,
- final int iVariateIndex,
- final int iOrder)
- {
- org.drip.numerical.differentiation.Differential[] aDiff = differential (adblVariate, iVariateIndex, iOrder);
- if (null == aDiff) return null;
- int iOutputDimension = aDiff.length;
- double[] adblDerivative = new double[iOutputDimension];
- if (0 == iOutputDimension) return null;
- for (int i = 0; i < iOutputDimension; ++i)
- adblDerivative[i] = aDiff[i].calcSlope (true);
- return adblDerivative;
- }
- /**
- * Integrate over the given Input Range Using Uniform Monte-Carlo
- *
- * @param adblLeftEdge Array of Input Left Edge
- * @param adblRightEdge Array of Input Right Edge
- *
- * @return The Array Containing the Result of the Integration over the specified Range
- */
- public double[] integrate (
- final double[] adblLeftEdge,
- final double[] adblRightEdge)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblLeftEdge) ||
- !org.drip.numerical.common.NumberUtil.IsValid (adblRightEdge))
- return null;
- int iOutputDimension = -1;
- double[] adblIntegrand = null;
- int iNumVariate = adblLeftEdge.length;
- double[] adblVariate = new double[iNumVariate];
- double[] adblVariateWidth = new double[iNumVariate];
- if (adblRightEdge.length != iNumVariate) return null;
- for (int j = 0; j < iNumVariate; ++j)
- adblVariateWidth[j] = adblRightEdge[j] - adblLeftEdge[j];
- for (int i = 0; i < QUADRATURE_SAMPLING; ++i) {
- for (int j = 0; j < iNumVariate; ++j)
- adblVariate[j] = adblLeftEdge[j] + java.lang.Math.random() * adblVariateWidth[j];
- double[] adblValue = evaluate (adblVariate);
- if (null == adblValue || 0 == (iOutputDimension = adblValue.length)) return null;
- if (null == adblIntegrand) adblIntegrand = new double[iOutputDimension];
- for (int j = 0; j < iOutputDimension; ++j)
- adblIntegrand[j] += adblValue[j];
- }
- for (int i = 0; i < iOutputDimension; ++i) {
- for (int j = 0; j < iNumVariate; ++j)
- adblIntegrand[i] = adblIntegrand[i] * adblVariateWidth[j];
- adblIntegrand[i] /= QUADRATURE_SAMPLING;
- }
- return adblIntegrand;
- }
- }