ErrorFunction.java
- package org.drip.function.e2erf;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>ErrorFunction</i> implements the E<sub>2</sub> Error Function (erf). The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
- * on Mathematics</b>
- * </li>
- * <li>
- * Chang, S. H., P. C. Cosman, L. B. Milstein (2011): Chernoff-Type Bounds for Gaussian Error
- * Function <i>IEEE Transactions on Communications</i> <b>59 (11)</b> 2939-2944
- * </li>
- * <li>
- * Cody, W. J. (1991): Algorithm 715: SPECFUN – A Portable FORTRAN Package of Special Function
- * Routines and Test Drivers <i>ACM Transactions on Mathematical Software</i> <b>19 (1)</b>
- * 22-32
- * </li>
- * <li>
- * Schopf, H. M., and P. H. Supancic (2014): On Burmann’s Theorem and its Application to Problems of
- * Linear and Non-linear Heat Transfer and Diffusion
- * https://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/
- * </li>
- * <li>
- * Wikipedia (2019): Error Function https://en.wikipedia.org/wiki/Error_function
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/e2erf/README.md">E<sub>2</sub> erf and erf<sup>-1</sup> Implementations</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class ErrorFunction extends org.drip.numerical.estimation.R1ToR1IntegrandLimitEstimator
- {
- private org.drip.numerical.estimation.R1ToR1Series _r1ToR1SeriesGenerator = null;
- /**
- * Construct the Euler-MacLaurin Instance of the E<sub>2</sub> erf
- *
- * @param termCount The Count of Approximation Terms
- *
- * @return The Euler-MacLaurin Instance of the E<sub>2</sub> erf
- */
- public static final ErrorFunction MacLaurin (
- final int termCount)
- {
- final org.drip.function.e2erf.MacLaurinSeries e2MacLaurinSeriesGenerator =
- org.drip.function.e2erf.MacLaurinSeries.ERF (termCount);
- if (null == e2MacLaurinSeriesGenerator)
- {
- return null;
- }
- try
- {
- return new ErrorFunction (
- e2MacLaurinSeriesGenerator,
- null
- )
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("ErrorFunction::MacLaurin::evaluate => Invalid Inputs");
- }
- double erf = 2. / java.lang.Math.sqrt (java.lang.Math.PI) *
- e2MacLaurinSeriesGenerator.cumulative (
- 0.,
- z
- );
- return erf > 1. ? 1. : erf;
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Convergent Hans Heinrich Burmann Version of the E<sub>2</sub> erf
- *
- * @return The Convergent Hans Heinrich Burmann Version of the E<sub>2</sub> erf
- */
- public static final ErrorFunction HansHeinrichBurmannConvergent()
- {
- final org.drip.numerical.estimation.R1ToR1Series
- hansHeinrichBurmannConvergentSeriesGenerator =
- org.drip.function.e2erf.HansHeinrichBurmannSeries.Convergent();
- if (null == hansHeinrichBurmannConvergentSeriesGenerator)
- {
- return null;
- }
- try
- {
- return new ErrorFunction (
- hansHeinrichBurmannConvergentSeriesGenerator,
- null
- )
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("ErrorFunction::HansHeinrichBurmannConvergent::evaluate => Invalid Inputs");
- }
- double erf = 2. / java.lang.Math.sqrt (java.lang.Math.PI) *
- java.lang.Math.sqrt (1. - java.lang.Math.exp (-1. * z * z)) *
- hansHeinrichBurmannConvergentSeriesGenerator.cumulative (
- 0.,
- z
- );
- return erf > 1. ? 1. : erf;
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Schopf-Supancic (2014) Hans Heinrich Burmann Version of the E<sub>2</sub> erf
- *
- * @return The Schopf-Supancic (2014) Hans Heinrich Burmann Version of the E<sub>2</sub> erf
- */
- public static final ErrorFunction HansHeinrichBurmannSchopfSupancic2014()
- {
- final org.drip.numerical.estimation.R1ToR1Series hansHeinrichBurmannConvergentSeriesGenerator
- = org.drip.function.e2erf.HansHeinrichBurmannSeries.SchopfSupancic2014();
- if (null == hansHeinrichBurmannConvergentSeriesGenerator)
- {
- return null;
- }
- try
- {
- return new ErrorFunction (
- hansHeinrichBurmannConvergentSeriesGenerator,
- null
- )
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("ErrorFunction::HansHeinrichBurmannSchopfSupancic2014::evaluate => Invalid Inputs");
- }
- double erf = 2. / java.lang.Math.sqrt (java.lang.Math.PI) *
- java.lang.Math.sqrt (1. - java.lang.Math.exp (-1. * z * z)) *
- hansHeinrichBurmannConvergentSeriesGenerator.cumulative (
- 0.,
- z
- );
- return erf > 1. ? 1. : erf;
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * ErrorFunction Constructor
- *
- * @param r1ToR1SeriesGenerator R<sup>1</sup> To R<sup>1</sup> Series Generator
- * @param dc Differential Control
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public ErrorFunction (
- final org.drip.numerical.estimation.R1ToR1Series r1ToR1SeriesGenerator,
- final org.drip.numerical.differentiation.DerivativeControl dc)
- throws java.lang.Exception
- {
- super (
- dc,
- 0.
- );
- _r1ToR1SeriesGenerator = r1ToR1SeriesGenerator;
- }
- @Override public double derivative (
- final double z,
- final int order)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z) ||
- 1 > order)
- {
- throw new java.lang.Exception ("ErrorFunction::derivative => Invalid Inputs");
- }
- return 1 == order ? 2. * java.lang.Math.exp (-1. * z * z) / java.lang.Math.sqrt (java.lang.Math.PI) :
- super.derivative (
- z,
- order
- );
- }
- @Override public org.drip.function.definition.R1ToR1 antiDerivative()
- {
- return new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double x)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (x))
- {
- throw new java.lang.Exception
- ("ErrorFunction::antiDerivative::evaluate => Invalid Inputs");
- }
- return x * this.evaluate (x) + java.lang.Math.exp (-1. * x * x) / java.lang.Math.sqrt
- (java.lang.Math.PI);
- }
- };
- }
- @Override public org.drip.numerical.estimation.R1Estimate seriesEstimateNative (
- final double x)
- {
- return null == _r1ToR1SeriesGenerator ? seriesEstimate (
- x,
- null,
- null
- ) : seriesEstimate (
- x,
- _r1ToR1SeriesGenerator.termWeightMap(),
- _r1ToR1SeriesGenerator
- );
- }
- @Override public org.drip.function.definition.R1ToR1 integrand()
- {
- return new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double z)
- {
- return 2. * java.lang.Math.exp (-1. * z * z) / java.lang.Math.sqrt (java.lang.Math.PI);
- }
- };
- }
- /**
- * Compute the Q Value for the given X
- *
- * @param x X
- *
- * @return The Q Value
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double q (
- final double x)
- throws java.lang.Exception
- {
- return 0.5 * (1. - evaluate (x / java.lang.Math.sqrt (2.)));
- }
- /**
- * Compute the CDF Value for the given X
- *
- * @param x X
- *
- * @return The CDF Value
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double cdf (
- final double x)
- throws java.lang.Exception
- {
- return 0.5 * (1. + evaluate (x / java.lang.Math.sqrt (2.)));
- }
- /**
- * Compute the erfc Value for the given X
- *
- * @param x X
- *
- * @return The erfc Value
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double erfc (
- final double x)
- throws java.lang.Exception
- {
- return 1. - evaluate (x);
- }
- /**
- * Compute the E<sub>2</sub> erf Gaussian Density Integral over -inf to +inf
- *
- * @param a The Scale Parameter
- * @param b The Displacement Parameter
- * @param r1UnivariateNormal The R<sup>1</sup> Gaussian Distribution Parameters
- *
- * @return The E<sub>2</sub> erf Gaussian Density Integral over -inf to +inf
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double gaussianDensityIntegral (
- final double a,
- final double b,
- final org.drip.measure.gaussian.R1UnivariateNormal r1UnivariateNormal)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (a) ||
- !org.drip.numerical.common.NumberUtil.IsValid (b) ||
- null == r1UnivariateNormal)
- {
- throw new java.lang.Exception ("ErrorFunction::gaussianDensityIntegral => Invalid Inputs");
- }
- double sigma = r1UnivariateNormal.variance();
- return evaluate (
- (a * r1UnivariateNormal.mean() + b) / java.lang.Math.sqrt (1. + 2 * sigma * sigma * a * a)
- );
- }
- }