ErrorFunctionInverse.java

  1. package org.drip.function.e2erf;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>ErrorFunctionInverse</i> implements the E<sub>2</sub> erf Inverse erf<sup>-1</sup>. The References are:
  76.  *
  77.  * <br><br>
  78.  *  <ul>
  79.  *      <li>
  80.  *          Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
  81.  *              on Mathematics</b>
  82.  *      </li>
  83.  *      <li>
  84.  *          Chang, S. H., P. C. Cosman, L. B. Milstein (2011): Chernoff-Type Bounds for Gaussian Error
  85.  *              Function <i>IEEE Transactions on Communications</i> <b>59 (11)</b> 2939-2944
  86.  *      </li>
  87.  *      <li>
  88.  *          Cody, W. J. (1991): Algorithm 715: SPECFUN – A Portable FORTRAN Package of Special Function
  89.  *              Routines and Test Drivers <i>ACM Transactions on Mathematical Software</i> <b>19 (1)</b>
  90.  *              22-32
  91.  *      </li>
  92.  *      <li>
  93.  *          Schopf, H. M., and P. H. Supancic (2014): On Burmann’s Theorem and its Application to Problems of
  94.  *              Linear and Non-linear Heat Transfer and Diffusion
  95.  *              https://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/
  96.  *      </li>
  97.  *      <li>
  98.  *          Wikipedia (2019): Error Function https://en.wikipedia.org/wiki/Error_function
  99.  *      </li>
  100.  *  </ul>
  101.  *
  102.  *  <br><br>
  103.  *  <ul>
  104.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  105.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  106.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
  107.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/e2erf/README.md">E<sub>2</sub> erf and erf<sup>-1</sup> Implementations</a></li>
  108.  *  </ul>
  109.  *
  110.  * @author Lakshmi Krishnamurthy
  111.  */

  112. public abstract class ErrorFunctionInverse extends org.drip.numerical.estimation.R1ToR1Estimator
  113. {
  114.     private org.drip.numerical.estimation.R1ToR1Series _r1ToR1SeriesGenerator = null;

  115.     /**
  116.      * Construct Winitzki (2008) Version of the Analytical E<sub>2</sub> erf Inverse
  117.      *
  118.      * @param a a
  119.      *
  120.      * @return Winitzki (2008) Version of the Analytical E<sub>2</sub> erf Inverse
  121.      */

  122.     public static final org.drip.function.e2erf.ErrorFunctionInverse Winitzki2008 (
  123.         final double a)
  124.     {
  125.         try
  126.         {
  127.             return !org.drip.numerical.common.NumberUtil.IsValid (a) ? null :
  128.                 new org.drip.function.e2erf.ErrorFunctionInverse (
  129.                     null,
  130.                     null
  131.                 )
  132.             {
  133.                 @Override public double evaluate (
  134.                     final double z)
  135.                     throws java.lang.Exception
  136.                 {
  137.                     if (!org.drip.numerical.common.NumberUtil.IsValid (z) || z <= -1. || z >= 1.)
  138.                     {
  139.                         throw new java.lang.Exception
  140.                             ("ErrorFunctionInverse::Winitzki2008::evaluate => Invalid Inputs");
  141.                     }

  142.                     if (0. == z)
  143.                     {
  144.                         return 0.;
  145.                     }

  146.                     if (0. > z)
  147.                     {
  148.                         return -1. * evaluate (-1. * z);
  149.                     }

  150.                     double twoOverPIA = 2. / (java.lang.Math.PI * a);

  151.                     double lnOneMinusZ2 = java.lang.Math.log (1. - z * z);

  152.                     double halfLnOneMinusZ2 = 0.5 * lnOneMinusZ2;
  153.                     double twoOverPIAPlusHalfLnOneMinusZ2 = twoOverPIA + halfLnOneMinusZ2;

  154.                     double erfi = java.lang.Math.sqrt (
  155.                         java.lang.Math.sqrt (
  156.                             twoOverPIAPlusHalfLnOneMinusZ2 * twoOverPIAPlusHalfLnOneMinusZ2 -
  157.                                 (lnOneMinusZ2 / a)
  158.                         ) - twoOverPIAPlusHalfLnOneMinusZ2
  159.                     );

  160.                     return erfi < 0. ? -1. * erfi : erfi;
  161.                 }
  162.             };
  163.         }
  164.         catch (java.lang.Exception e)
  165.         {
  166.             e.printStackTrace();
  167.         }

  168.         return null;
  169.     }

  170.     /**
  171.      * Construct Winitzki (2008a) Version of the Analytical E<sub>2</sub> erf Inverse
  172.      *
  173.      * @return Winitzki (2008a) Version of the Analytical E<sub>2</sub> erf Inverse
  174.      */

  175.     public static final org.drip.function.e2erf.ErrorFunctionInverse Winitzki2008a()
  176.     {
  177.         return Winitzki2008 (
  178.             8. * (java.lang.Math.PI - 3.) / (3. * java.lang.Math.PI * (4. - java.lang.Math.PI))
  179.         );
  180.     }

  181.     /**
  182.      * Construct Winitzki (2008b) Version of the Analytical E<sub>2</sub> erf Inverse
  183.      *
  184.      * @return Winitzki (2008b) Version of the Analytical E<sub>2</sub> erf Inverse
  185.      */

  186.     public static final org.drip.function.e2erf.ErrorFunctionInverse Winitzki2008b()
  187.     {
  188.         return Winitzki2008 (0.147);
  189.     }

  190.     /**
  191.      * Construct the Euler-MacLaurin Instance of the E<sub>2</sub> erf Inverse
  192.      *
  193.      * @param termCount The Count of Approximation Terms
  194.      *
  195.      * @return The Euler-MacLaurin Instance of the E<sub>2</sub> erf Inverse
  196.      */

  197.     public static final ErrorFunctionInverse MacLaurin (
  198.         final int termCount)
  199.     {
  200.         final org.drip.function.e2erf.MacLaurinSeries e2InverseMacLaurinSeriesGenerator =
  201.             org.drip.function.e2erf.MacLaurinSeries.ERFI (termCount);

  202.         if (null == e2InverseMacLaurinSeriesGenerator)
  203.         {
  204.             return null;
  205.         }

  206.         return new ErrorFunctionInverse (
  207.             e2InverseMacLaurinSeriesGenerator,
  208.             null
  209.         )
  210.         {
  211.             @Override public double evaluate (
  212.                 final double z)
  213.                 throws java.lang.Exception
  214.             {
  215.                 if (!org.drip.numerical.common.NumberUtil.IsValid (z) || -1. >= z || 1. <= z)
  216.                 {
  217.                     throw new java.lang.Exception
  218.                         ("ErrorFunctionInverse::MacLaurin::evaluate => Invalid Inputs");
  219.                 }

  220.                 double erfi = e2InverseMacLaurinSeriesGenerator.cumulative (
  221.                     0.,
  222.                     z
  223.                 );

  224.                 return erfi > 1. ? 1. : erfi;
  225.             }
  226.         };
  227.     }

  228.     protected ErrorFunctionInverse (
  229.         final org.drip.numerical.estimation.R1ToR1Series r1ToR1SeriesGenerator,
  230.         final org.drip.numerical.differentiation.DerivativeControl dc)
  231.     {
  232.         super (dc);

  233.         _r1ToR1SeriesGenerator = r1ToR1SeriesGenerator;
  234.     }

  235.     @Override public org.drip.numerical.estimation.R1Estimate seriesEstimateNative (
  236.         final double x)
  237.     {
  238.         return null == _r1ToR1SeriesGenerator ? seriesEstimate (
  239.             x,
  240.             null,
  241.             null
  242.         ) : seriesEstimate (
  243.             x,
  244.             _r1ToR1SeriesGenerator.termWeightMap(),
  245.             _r1ToR1SeriesGenerator
  246.         );
  247.     }

  248.     /**
  249.      * Compute the Probit Value for the given p
  250.      *
  251.      * @param p P
  252.      *
  253.      * @return The Probit Value
  254.      *
  255.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  256.      */

  257.     public double probit (
  258.         final double p)
  259.         throws java.lang.Exception
  260.     {
  261.         if (!org.drip.numerical.common.NumberUtil.IsValid (p))
  262.         {
  263.             throw new java.lang.Exception ("ErrorFunctionInverse::probit => Invalid Inputs");
  264.         }

  265.         return java.lang.Math.sqrt (2.) * evaluate (2. * p - 1.);
  266.     }

  267.     /**
  268.      * Compute the Inverse CDF Value for the given p
  269.      *
  270.      * @param p P
  271.      *
  272.      * @return The Inverse CDF Value
  273.      *
  274.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  275.      */

  276.     public double inverseCDF (
  277.         final double p)
  278.         throws java.lang.Exception
  279.     {
  280.         if (!org.drip.numerical.common.NumberUtil.IsValid (p))
  281.         {
  282.             throw new java.lang.Exception ("ErrorFunctionInverse::inverseCDF => Invalid Inputs");
  283.         }

  284.         return java.lang.Math.sqrt (2.) * evaluate (2. * p - 1.);
  285.     }
  286. }