ErrorFunctionInverse.java
- package org.drip.function.e2erf;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>ErrorFunctionInverse</i> implements the E<sub>2</sub> erf Inverse erf<sup>-1</sup>. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
- * on Mathematics</b>
- * </li>
- * <li>
- * Chang, S. H., P. C. Cosman, L. B. Milstein (2011): Chernoff-Type Bounds for Gaussian Error
- * Function <i>IEEE Transactions on Communications</i> <b>59 (11)</b> 2939-2944
- * </li>
- * <li>
- * Cody, W. J. (1991): Algorithm 715: SPECFUN – A Portable FORTRAN Package of Special Function
- * Routines and Test Drivers <i>ACM Transactions on Mathematical Software</i> <b>19 (1)</b>
- * 22-32
- * </li>
- * <li>
- * Schopf, H. M., and P. H. Supancic (2014): On Burmann’s Theorem and its Application to Problems of
- * Linear and Non-linear Heat Transfer and Diffusion
- * https://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/
- * </li>
- * <li>
- * Wikipedia (2019): Error Function https://en.wikipedia.org/wiki/Error_function
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/e2erf/README.md">E<sub>2</sub> erf and erf<sup>-1</sup> Implementations</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public abstract class ErrorFunctionInverse extends org.drip.numerical.estimation.R1ToR1Estimator
- {
- private org.drip.numerical.estimation.R1ToR1Series _r1ToR1SeriesGenerator = null;
- /**
- * Construct Winitzki (2008) Version of the Analytical E<sub>2</sub> erf Inverse
- *
- * @param a a
- *
- * @return Winitzki (2008) Version of the Analytical E<sub>2</sub> erf Inverse
- */
- public static final org.drip.function.e2erf.ErrorFunctionInverse Winitzki2008 (
- final double a)
- {
- try
- {
- return !org.drip.numerical.common.NumberUtil.IsValid (a) ? null :
- new org.drip.function.e2erf.ErrorFunctionInverse (
- null,
- null
- )
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z) || z <= -1. || z >= 1.)
- {
- throw new java.lang.Exception
- ("ErrorFunctionInverse::Winitzki2008::evaluate => Invalid Inputs");
- }
- if (0. == z)
- {
- return 0.;
- }
- if (0. > z)
- {
- return -1. * evaluate (-1. * z);
- }
- double twoOverPIA = 2. / (java.lang.Math.PI * a);
- double lnOneMinusZ2 = java.lang.Math.log (1. - z * z);
- double halfLnOneMinusZ2 = 0.5 * lnOneMinusZ2;
- double twoOverPIAPlusHalfLnOneMinusZ2 = twoOverPIA + halfLnOneMinusZ2;
- double erfi = java.lang.Math.sqrt (
- java.lang.Math.sqrt (
- twoOverPIAPlusHalfLnOneMinusZ2 * twoOverPIAPlusHalfLnOneMinusZ2 -
- (lnOneMinusZ2 / a)
- ) - twoOverPIAPlusHalfLnOneMinusZ2
- );
- return erfi < 0. ? -1. * erfi : erfi;
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct Winitzki (2008a) Version of the Analytical E<sub>2</sub> erf Inverse
- *
- * @return Winitzki (2008a) Version of the Analytical E<sub>2</sub> erf Inverse
- */
- public static final org.drip.function.e2erf.ErrorFunctionInverse Winitzki2008a()
- {
- return Winitzki2008 (
- 8. * (java.lang.Math.PI - 3.) / (3. * java.lang.Math.PI * (4. - java.lang.Math.PI))
- );
- }
- /**
- * Construct Winitzki (2008b) Version of the Analytical E<sub>2</sub> erf Inverse
- *
- * @return Winitzki (2008b) Version of the Analytical E<sub>2</sub> erf Inverse
- */
- public static final org.drip.function.e2erf.ErrorFunctionInverse Winitzki2008b()
- {
- return Winitzki2008 (0.147);
- }
- /**
- * Construct the Euler-MacLaurin Instance of the E<sub>2</sub> erf Inverse
- *
- * @param termCount The Count of Approximation Terms
- *
- * @return The Euler-MacLaurin Instance of the E<sub>2</sub> erf Inverse
- */
- public static final ErrorFunctionInverse MacLaurin (
- final int termCount)
- {
- final org.drip.function.e2erf.MacLaurinSeries e2InverseMacLaurinSeriesGenerator =
- org.drip.function.e2erf.MacLaurinSeries.ERFI (termCount);
- if (null == e2InverseMacLaurinSeriesGenerator)
- {
- return null;
- }
- return new ErrorFunctionInverse (
- e2InverseMacLaurinSeriesGenerator,
- null
- )
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z) || -1. >= z || 1. <= z)
- {
- throw new java.lang.Exception
- ("ErrorFunctionInverse::MacLaurin::evaluate => Invalid Inputs");
- }
- double erfi = e2InverseMacLaurinSeriesGenerator.cumulative (
- 0.,
- z
- );
- return erfi > 1. ? 1. : erfi;
- }
- };
- }
- protected ErrorFunctionInverse (
- final org.drip.numerical.estimation.R1ToR1Series r1ToR1SeriesGenerator,
- final org.drip.numerical.differentiation.DerivativeControl dc)
- {
- super (dc);
- _r1ToR1SeriesGenerator = r1ToR1SeriesGenerator;
- }
- @Override public org.drip.numerical.estimation.R1Estimate seriesEstimateNative (
- final double x)
- {
- return null == _r1ToR1SeriesGenerator ? seriesEstimate (
- x,
- null,
- null
- ) : seriesEstimate (
- x,
- _r1ToR1SeriesGenerator.termWeightMap(),
- _r1ToR1SeriesGenerator
- );
- }
- /**
- * Compute the Probit Value for the given p
- *
- * @param p P
- *
- * @return The Probit Value
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double probit (
- final double p)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (p))
- {
- throw new java.lang.Exception ("ErrorFunctionInverse::probit => Invalid Inputs");
- }
- return java.lang.Math.sqrt (2.) * evaluate (2. * p - 1.);
- }
- /**
- * Compute the Inverse CDF Value for the given p
- *
- * @param p P
- *
- * @return The Inverse CDF Value
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double inverseCDF (
- final double p)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (p))
- {
- throw new java.lang.Exception ("ErrorFunctionInverse::inverseCDF => Invalid Inputs");
- }
- return java.lang.Math.sqrt (2.) * evaluate (2. * p - 1.);
- }
- }