ErrorFunctionComplementAnalytical.java
- package org.drip.function.e2erfc;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>ErrorFunctionComplementAnalytical</i> implements Analytical Versions of the Error Function Complement
- * (erfc) Estimate. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
- * on Mathematics</b>
- * </li>
- * <li>
- * Chang, S. H., P. C. Cosman, L. B. Milstein (2011): Chernoff-Type Bounds for Gaussian Error
- * Function <i>IEEE Transactions on Communications</i> <b>59 (11)</b> 2939-2944
- * </li>
- * <li>
- * Cody, W. J. (1991): Algorithm 715: SPECFUN – A Portable FORTRAN Package of Special Function
- * Routines and Test Drivers <i>ACM Transactions on Mathematical Software</i> <b>19 (1)</b>
- * 22-32
- * </li>
- * <li>
- * Schopf, H. M., and P. H. Supancic (2014): On Burmann’s Theorem and its Application to Problems of
- * Linear and Non-linear Heat Transfer and Diffusion
- * https://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/
- * </li>
- * <li>
- * Wikipedia (2019): Error Function https://en.wikipedia.org/wiki/Error_function
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/README.md">R<sup>d</sup> To R<sup>d</sup> Function Analysis</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/function/e2erfc/README.md">E<sub>2</sub> erfc Estimation Function Implementation</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class ErrorFunctionComplementAnalytical
- {
- private static final double ContinuedFractionRecursor (
- final double z,
- final int termIndex,
- final int termCount)
- {
- if (termIndex == termCount)
- {
- return 0.;
- }
- return ((1 == termIndex % 2) ? z * z : 1.) + 0.5 * termIndex / (
- 1. + ContinuedFractionRecursor (
- z,
- termIndex + 1,
- termCount
- )
- );
- }
- /**
- * Construct Karagiannidis-Lioumpas (2007) Version of the Analytical Error Function Complement
- *
- * @param A A
- * @param B B
- *
- * @return Karagiannidis-Lioumpas (2007) Version of the Analytical Error Function Complement
- */
- public static final org.drip.function.e2erfc.ErrorFunctionComplement KaragiannidisLioumpas2007 (
- final double A,
- final double B)
- {
- try
- {
- return !org.drip.numerical.common.NumberUtil.IsValid (A) ||
- !org.drip.numerical.common.NumberUtil.IsValid (B) ? null :
- new org.drip.function.e2erfc.ErrorFunctionComplement (
- null,
- null
- )
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("ErrorFunctionComplementAnalytical::KaragiannidisLioumpas2007::evaluate => Invalid Inputs");
- }
- if (0. == z)
- {
- return 1.;
- }
- if (z < 0)
- {
- return 2. - evaluate (-1. * z);
- }
- return (1. - java.lang.Math.exp (-1. * A * z)) * java.lang.Math.exp (-1. * z * z) /
- (B * z * java.lang.Math.sqrt (java.lang.Math.PI));
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct Karagiannidis-Lioumpas (2007) Version of the Analytical Error Function Complement
- *
- * @return Karagiannidis-Lioumpas (2007) Version of the Analytical Error Function Complement
- */
- public static final org.drip.function.e2erfc.ErrorFunctionComplement KaragiannidisLioumpas2007()
- {
- return KaragiannidisLioumpas2007 (
- 1.980,
- 1.135
- );
- }
- /**
- * Construct the Chiani-Dardari-Simon (2012a) Version of the Analytical Error Function Complement
- *
- * @return The Chiani-Dardari-Simon (2012a) Version of the Analytical Error Function Complement
- */
- public static final org.drip.function.e2erfc.ErrorFunctionComplement ChianiDardariSimon2012a()
- {
- try
- {
- return new org.drip.function.e2erfc.ErrorFunctionComplement (
- null,
- null
- )
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("ErrorFunctionComplementAnalytical::ChianiDardariSimon2012a::evaluate => Invalid Inputs");
- }
- if (0. == z)
- {
- return 1.;
- }
- if (z < 0)
- {
- return 2. - evaluate (-1. * z);
- }
- return 0.5 * java.lang.Math.exp (-2. * z * z) + 0.5 * java.lang.Math.exp (-1. * z * z);
- }
- @Override public org.drip.numerical.estimation.R1Estimate boundedEstimate (
- final double z)
- {
- try
- {
- double baseline = evaluate (z);
- return new org.drip.numerical.estimation.R1Estimate (
- baseline,
- baseline,
- java.lang.Math.exp (-1. * z * z)
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Chiani-Dardari-Simon (2012b) Version of the Analytical Error Function Complement
- *
- * @return The Chiani-Dardari-Simon (2012b) Version of the Analytical Error Function Complement
- */
- public static final org.drip.function.e2erfc.ErrorFunctionComplement ChianiDardariSimon2012b()
- {
- try
- {
- return new org.drip.function.e2erfc.ErrorFunctionComplement (
- null,
- null
- )
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("ErrorFunctionComplementAnalytical::ChianiDardariSimon2012b::evaluate => Invalid Inputs");
- }
- if (0. == z)
- {
- return 1.;
- }
- if (z < 0)
- {
- return 2. - evaluate (-1. * z);
- }
- return java.lang.Math.exp (-1. * z * z) / 6. + 0.5 * java.lang.Math.exp (-4. * z * z / 3.);
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Chang-Cosman-Milstein (2011) Version of the Analytical Error Function Complement
- *
- * @param beta Beta
- *
- * @return The Chang-Cosman-Milstein (2011) Version of the Analytical Error Function Complement
- */
- public static final org.drip.function.e2erfc.ErrorFunctionComplement ChangCosmanMilstein2011 (
- final double beta)
- {
- try
- {
- return !org.drip.numerical.common.NumberUtil.IsValid (beta) || 1. >= beta ? null :
- new org.drip.function.e2erfc.ErrorFunctionComplement (
- null,
- null
- )
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("ErrorFunctionComplementAnalytical::ChangCosmanMilstein2011::evaluate => Invalid Inputs");
- }
- if (0. == z)
- {
- return 1.;
- }
- if (z < 0)
- {
- return 2. - evaluate (-1. * z);
- }
- return java.lang.Math.sqrt (2. * java.lang.Math.E * (beta - 1.) / java.lang.Math.PI) *
- java.lang.Math.exp (-1. * beta * z * z) / beta;
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Continued Fraction Expansion Version of the Analytical Error Function Complement
- *
- * @param termCount Term Count
- *
- * @return The Continued Fraction Expansion Version of the Analytical Error Function Complement
- */
- public static final org.drip.function.e2erfc.ErrorFunctionComplement ContinuedFractionExpansion (
- final int termCount)
- {
- try
- {
- return 0 >= termCount ? null : new org.drip.function.e2erfc.ErrorFunctionComplement (
- null,
- null
- )
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("ErrorFunctionComplementAnalytical::ContinuedFractionExpansion::evaluate => Invalid Inputs");
- }
- if (0. == z)
- {
- return 1.;
- }
- if (z < 0)
- {
- return 2. - evaluate (-1. * z);
- }
- return z * java.lang.Math.exp (-1. * z * z) / java.lang.Math.sqrt (java.lang.Math.PI) /
- ContinuedFractionRecursor (
- z,
- 1,
- termCount
- );
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Craig 1991 Version of the ErrorFunctionComplement Quadrature
- *
- * @return The Craig 1991 Version of the ErrorFunctionComplement Quadrature
- */
- public static final org.drip.function.e2erfc.ErrorFunctionComplement Craig1991()
- {
- try
- {
- return new org.drip.function.e2erfc.ErrorFunctionComplement (
- null,
- null
- )
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("ErrorFunctionComplementAnalytical::Craig1991::evaluate => Invalid Inputs");
- }
- if (0. == z)
- {
- return 1.;
- }
- if (z < 0)
- {
- return 2. - evaluate (-1. * z);
- }
- return org.drip.numerical.integration.NewtonCotesQuadratureGenerator.Zero_PlusOne (
- 0.,
- z,
- 100
- ).integrate (
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double theta)
- throws java.lang.Exception
- {
- if (0. == theta)
- {
- return 0.;
- }
- double sinTheta = java.lang.Math.sin (theta);
- return 2. * java.lang.Math.exp (-1. * z * z / (sinTheta * sinTheta)) /
- java.lang.Math.PI;
- }
- }
- );
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- }